Silk–PVA Hybrid Nanofibrous Scaffolds for Enhanced Primary Human Meniscal Cell Proliferation

Silk–PVA Hybrid Nanofibrous Scaffolds for Enhanced Primary Human Meniscal Cell Proliferation In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)–polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF). The scaffolds were characterized with suitable techniques for its functional groups, porosity, and swelling ratio. Among the nanofibers, 3:1 SF:PVA blend showed uniform morphology and fiber diameter. The blended scaffolds had fluid uptake and swelling ratio of 80 % and 458 ± 21 %, respectively. Primary meniscal cells isolated from surgical debris after meniscectomy were subcultured and seeded onto these hybrid nanofibrous scaffolds. Meniscal cell attachment studies confirmed that 3:1 SF:PVA nanofibrous scaffolds supported better cell attachment and growth. The DNA and collagen content increased significantly with 3:1 SF:PVA. These results clearly indicate that a blend of SF:PVA at 3:1 ratio is suitable for meniscus cell proliferation when compared to pure SF-PVA nanofibers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Silk–PVA Hybrid Nanofibrous Scaffolds for Enhanced Primary Human Meniscal Cell Proliferation

Loading next page...
 
/lp/springer_journal/silk-pva-hybrid-nanofibrous-scaffolds-for-enhanced-primary-human-svLCTGgNiO
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-016-9932-z
Publisher site
See Article on Publisher Site

Abstract

In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)–polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF). The scaffolds were characterized with suitable techniques for its functional groups, porosity, and swelling ratio. Among the nanofibers, 3:1 SF:PVA blend showed uniform morphology and fiber diameter. The blended scaffolds had fluid uptake and swelling ratio of 80 % and 458 ± 21 %, respectively. Primary meniscal cells isolated from surgical debris after meniscectomy were subcultured and seeded onto these hybrid nanofibrous scaffolds. Meniscal cell attachment studies confirmed that 3:1 SF:PVA nanofibrous scaffolds supported better cell attachment and growth. The DNA and collagen content increased significantly with 3:1 SF:PVA. These results clearly indicate that a blend of SF:PVA at 3:1 ratio is suitable for meniscus cell proliferation when compared to pure SF-PVA nanofibers.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off