Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes

Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of... Arsenic (As) gets accumulated in plants via phosphorous transporters and water channels and interferes with nutrient and water uptake, adversely affecting growth and productivity. Although, Si and AM have been reported to combat arsenic stress, their comparative and interactive roles in ameliorating As V and As III toxicities have not been reported. Study evaluated effects of Si and Rhizophagus irregularis on growth, As uptake and yield under arsenate and arsenite stress in two pigeonpea genotypes (metal tolerant—Pusa 2002 and metal sensitive—Pusa 991). Higher As accumulation and translocation was observed in As III treated roots of Pusa 991 than those of Pusa 2002 when compared with As V. Roots were more negatively affected than shoots which led to a significant decline in nutrient uptake, leaf chlorophylls, and yield, with As III inducing more negative effects. Pusa 2002 established more effective mycorrhizal symbiosis and had higher biomass than Pusa 991. Si was more effective in inducing shoot biomass while AM inoculation significantly improved root biomass. AM enhanced Si uptake in roots and leaves in a genotype dependent manner. Combined application of Si and AM were highly beneficial in improving leaf water status, chlorophyll pigments, biomass, and productivity. Complete amelioration of negative impacts of both concentrations of As V and lower concentration of As III were recorded under +Si +AM in Pusa 2002. Results highlighted great potential of Si in improving growth and productivity of pigeonpea through R. irregularis under As V and As III stresses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes

Loading next page...
 
/lp/springer_journal/silicon-and-rhizophagus-irregularis-potential-candidates-for-d8I9bOq0jj
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9463-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial