Silencing of the pollen-specific gene NTP303 and its family members in tobacco affects in vivo pollen tube growth and results in male sterile plants

Silencing of the pollen-specific gene NTP303 and its family members in tobacco affects in vivo... In seed plants, successful fertilization requires correct regulation of pollen tube growth. At germination and during growth, the pollen tube interacts with tissues from the pistil while the pollen tube extends via tip growth. Despite the fact that much research has been devoted to the mechanisms regulating pollen tube growth, many aspects are currently unknown. Previously, we have isolated a pollen-specific gene from tobacco—NTP303—that probably functions during pollen tube growth. NTP303 is part of a family of five members. Its expression is regulated both at the transcriptional and at the translational level. While NTP303 transcripts accumulate to high levels between early bi-cellular and mature pollen stages, NTP303 protein is hardly detectable until germination and pollen tube growth. In order to elucidate the role and function of NTP303 in the pollen tube, we studied the effect of NTP303 gene silencing on pollen function. Therefore, we have transformed tobacco plants with NTP303 co-suppression and anti-sense gene constructs. In these plants, the kanamycin resistance trait—which was linked to the NTP303-silencing gene—was not transmitted through the male gametophyte. This indicated that lowering the transcript level of NTP303 and/or its family members interferes with pollen function. Because we could not find a readily distinguishable phenotype in pollen from the hemizygous anti-sense and co-suppression plants, we rescued the defective pollen to produce doubled haploid plants that were homozygous for the NTP303 anti-sense gene. We found that in pollen from these plants the transcript levels of all NTP303 family members were reduced. Although pollen and pollen tubes from these plants appeared completely normalin vitro, the pollen tubes showed slower growth rates in vivo and arrested in the style before they reached the ovary, so that fertilization failed. These data demonstrate that NTP303 and its family members are essential for normal pollen tube growth and indicate several possible functions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Silencing of the pollen-specific gene NTP303 and its family members in tobacco affects in vivo pollen tube growth and results in male sterile plants

Loading next page...
 
/lp/springer_journal/silencing-of-the-pollen-specific-gene-ntp303-and-its-family-members-in-B8uA06nk6D
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-1964-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial