Silencing of a β-1,3-glucanase transgene is overcome during seed formation

Silencing of a β-1,3-glucanase transgene is overcome during seed formation Expression of a β-1,3-glucanase transgene (gn1) driven by the CaMV 35S promoter is silenced in the T17 homozygous tobacco transgenic line. This silencing process is post-transcriptionally regulated and subject to developmental control. We have examined this phenomenon to investigate the developmental pathways involved in suppression and reactivation of gn1 expression as well as to identify the plant tissues where these processes occur. Analysis of β-1,3-glucanase activity and gene expression have allowed us to determine that suppression of gn1 is a very efficient process reducing the steady-state gn1 mRNA level, simultaneously, in all leaves of the plant. Gene silencing occurs a few weeks after seed germination, and is maintained throughout vegetative growth and floral development. Expression of gn1 is restored in the maturing fruit some time after fertilization. In situ hybridization analyses show that expression of gn1 is restored within the developing seeds in tissues derived from meiotically divided cells. In contrast to the high level of expression found in seedlings obtained from germinated T17 homozygous seeds, the expression of gn1 is not reactivated in plantlets regenerated in vitro from leaf explants of suppressed T17 homozygous plants that is, in plant tissues obtained by mitotic division. Thus, reactivation of gn1 expression specifically occurs along the developmental programme controlling sexual reproduction and likely throughout epigenetic modifications affecting the state of gene expression during meiosis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Silencing of a β-1,3-glucanase transgene is overcome during seed formation

Loading next page...
 
/lp/springer_journal/silencing-of-a-1-3-glucanase-transgene-is-overcome-during-seed-tG9vEDvKk6
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005882106266
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial