Significant roles of oxygen and unbound •OH radical in phenol formation during photo-catalytic degradation of benzene on TiO2 suspension in aqueous system

Significant roles of oxygen and unbound •OH radical in phenol formation during photo-catalytic... Studies on photo-catalytic degradation of benzene using TiO2 photo-catalyst as a suspension in water is reported. Degradation studies have been carried out using 350 nm UV light. Phenol, a photo-catalytic product of benzene, was monitored under varying experimental conditions such as amount of TiO2, concentration of benzene, photolysis time, ambient (air, O2, Ar, N2O and N2O–O2 mixture), etc. The phenol yields in both aerated and O2-purged systems increased with the photolysis time. In contrast to oxygenated systems, the yields of phenol in deoxygenated (viz. Ar-purged and N2O-purged) systems were quite low (~30 μM) and remained steady. H2O2 yields in all these systems were also monitored, and found lower than an order of magnitude as compared to phenol yields for the respective systems. The rate of phenol production in aerated 1 mM benzene solution containing 0.05% TiO2 suspension was evaluated at 12.3 μM min−1 which is lower than the rate obtained in an O2-saturated system (22.4 μM min−1). The low yields of phenol in both Ar- and N2O-purged systems, and also the increasing trends in oxygenated systems, together reveal that, for the phenol formation with an enhanced rate, oxygen is essential. In the present study, it is implied that the photo-generated hole, which is mainly an •OH radical, is either freely available in the aqueous phase or migrates to the aqueous phase from the catalyst surface, to react with benzene to produce HO-adduct radical. Later, following reaction with oxygen, the adduct produces phenol. On the other hand, h+ and surface adsorbed •OH radical, being trapped/bonded due to rigid association with the catalyst surface, were not able to generate phenol under similar experimental conditions. The mechanism of phenol formation with TiO2 photolysis in an aqueous system is rechecked, on the basis of present results on h+/surface adsorbed •OH radical/unbound •OH radical scavenging by benzene, collectively with previous reports on various systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Significant roles of oxygen and unbound •OH radical in phenol formation during photo-catalytic degradation of benzene on TiO2 suspension in aqueous system

Loading next page...
 
/lp/springer_journal/significant-roles-of-oxygen-and-unbound-oh-radical-in-phenol-formation-JuZvz0K0JD
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media BV
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-009-0066-0
Publisher site
See Article on Publisher Site

Abstract

Studies on photo-catalytic degradation of benzene using TiO2 photo-catalyst as a suspension in water is reported. Degradation studies have been carried out using 350 nm UV light. Phenol, a photo-catalytic product of benzene, was monitored under varying experimental conditions such as amount of TiO2, concentration of benzene, photolysis time, ambient (air, O2, Ar, N2O and N2O–O2 mixture), etc. The phenol yields in both aerated and O2-purged systems increased with the photolysis time. In contrast to oxygenated systems, the yields of phenol in deoxygenated (viz. Ar-purged and N2O-purged) systems were quite low (~30 μM) and remained steady. H2O2 yields in all these systems were also monitored, and found lower than an order of magnitude as compared to phenol yields for the respective systems. The rate of phenol production in aerated 1 mM benzene solution containing 0.05% TiO2 suspension was evaluated at 12.3 μM min−1 which is lower than the rate obtained in an O2-saturated system (22.4 μM min−1). The low yields of phenol in both Ar- and N2O-purged systems, and also the increasing trends in oxygenated systems, together reveal that, for the phenol formation with an enhanced rate, oxygen is essential. In the present study, it is implied that the photo-generated hole, which is mainly an •OH radical, is either freely available in the aqueous phase or migrates to the aqueous phase from the catalyst surface, to react with benzene to produce HO-adduct radical. Later, following reaction with oxygen, the adduct produces phenol. On the other hand, h+ and surface adsorbed •OH radical, being trapped/bonded due to rigid association with the catalyst surface, were not able to generate phenol under similar experimental conditions. The mechanism of phenol formation with TiO2 photolysis in an aqueous system is rechecked, on the basis of present results on h+/surface adsorbed •OH radical/unbound •OH radical scavenging by benzene, collectively with previous reports on various systems.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 7, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off