Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide-induced thermotolerance in maize seedlings

Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen... Hydrogen peroxide (H2O2) and nitric oxide (NO) function as signal molecules in plant cells. Recently, hydrogen sulfide (H2S) has been found to have similar functions, but their interactions in the acquisition of thermotolerance in plants remain elusive. In current work, pretreatment with H2O2 rapidly induced endogenous H2O2 accumulation, which in turn improved survival percentage of maize seedlings (Zea mays L.) under heat stress, but these effects were eliminated by H2O2 scavenger dimethylthiourea indicating that H2O2-induced thermotolerance was involved in the accumulation of endogenous H2O2. H2O2 pretreatment also increased endogenous NO content, but this increase was abolished by NO scavenger cPTIO. Exogenously applied H2O2 also stimulated increase in the activity of L-cystine desulfhydrase, a key enzyme in H2S biosyn-thesis, followed by inducing endogenous H2S accumulation, while this accumulation was diminished by cPTIO. In addition, H2O2-induced thermotolerance was enhanced by NO donor sodium nitroprusside and H2S donors NaHS as well as GYY4137, respectively, and weakened by cPTIO, DL-propargylglycine (inhibitor of H2S biosynthesis) and hypotaurine (H2S scavenger). All of the above-mentioned results showed that H2O2 treatment could improve thermotolerance in maize seedlings, and the acquisition of thermotolerance induced by H2O2 may be involved in downstream signal crosstalk between NO and H2S. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide-induced thermotolerance in maize seedlings

Loading next page...
 
/lp/springer_journal/signal-crosstalk-between-nitric-oxide-and-hydrogen-sulfide-may-be-hmNKMuS2w3
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715030127
Publisher site
See Article on Publisher Site

Abstract

Hydrogen peroxide (H2O2) and nitric oxide (NO) function as signal molecules in plant cells. Recently, hydrogen sulfide (H2S) has been found to have similar functions, but their interactions in the acquisition of thermotolerance in plants remain elusive. In current work, pretreatment with H2O2 rapidly induced endogenous H2O2 accumulation, which in turn improved survival percentage of maize seedlings (Zea mays L.) under heat stress, but these effects were eliminated by H2O2 scavenger dimethylthiourea indicating that H2O2-induced thermotolerance was involved in the accumulation of endogenous H2O2. H2O2 pretreatment also increased endogenous NO content, but this increase was abolished by NO scavenger cPTIO. Exogenously applied H2O2 also stimulated increase in the activity of L-cystine desulfhydrase, a key enzyme in H2S biosyn-thesis, followed by inducing endogenous H2S accumulation, while this accumulation was diminished by cPTIO. In addition, H2O2-induced thermotolerance was enhanced by NO donor sodium nitroprusside and H2S donors NaHS as well as GYY4137, respectively, and weakened by cPTIO, DL-propargylglycine (inhibitor of H2S biosynthesis) and hypotaurine (H2S scavenger). All of the above-mentioned results showed that H2O2 treatment could improve thermotolerance in maize seedlings, and the acquisition of thermotolerance induced by H2O2 may be involved in downstream signal crosstalk between NO and H2S.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 17, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off