Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of organic dyes

Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of... The deposition of TiO2 nanoparticles on SiC was carried out by mechanical milling under different conditions. SiC–TiO2 samples were used as photocatalysts for the degradation of organic dyes such as methylene blue and rhodamine B. A short time deposition of TiO2 nanoparticles was observed during mechanical milling (2 min at 200 rpm) to cover the SiC particles. The presence of SiC and TiO2 (anatase and rutile) was confirmed by means of X-ray diffraction after thermal treatment at 450 °C. The deposition of TiO2 on SiC was corroborated by scanning electron microscopy analysis; the thickness of the thin layer of TiO2 deposited on SiC increases as the proportion of TiO2 increases. The energy band gap values obtained for these compounds were around 3.0 eV. SiC–TiO2 photocatalysts prepared by mechanical milling exhibited better activity under UV-light irradiation for the degradation of methylene blue and rhodamine B than commercial TiO2 powder (titania P25). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of organic dyes

Loading next page...
 
/lp/springer_journal/short-time-deposition-of-tio2-nanoparticles-on-sic-as-photocatalysts-iQnQuQ2ttN
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0617-7
Publisher site
See Article on Publisher Site

Abstract

The deposition of TiO2 nanoparticles on SiC was carried out by mechanical milling under different conditions. SiC–TiO2 samples were used as photocatalysts for the degradation of organic dyes such as methylene blue and rhodamine B. A short time deposition of TiO2 nanoparticles was observed during mechanical milling (2 min at 200 rpm) to cover the SiC particles. The presence of SiC and TiO2 (anatase and rutile) was confirmed by means of X-ray diffraction after thermal treatment at 450 °C. The deposition of TiO2 on SiC was corroborated by scanning electron microscopy analysis; the thickness of the thin layer of TiO2 deposited on SiC increases as the proportion of TiO2 increases. The energy band gap values obtained for these compounds were around 3.0 eV. SiC–TiO2 photocatalysts prepared by mechanical milling exhibited better activity under UV-light irradiation for the degradation of methylene blue and rhodamine B than commercial TiO2 powder (titania P25).

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 15, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off