Shedding of Phosphatidylserine from Developing Erythroid Cells Involves Microtubule Depolymerization and Affects Membrane Lipid Composition

Shedding of Phosphatidylserine from Developing Erythroid Cells Involves Microtubule... Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, flip-flops to the external leaflet during aging of, or trauma to, cells. A fraction of this PS undergoes shedding into the extracellular milieu. PS externalization and shedding change during maturation of erythroid cells and affect the functioning, senescence and elimination of mature RBCs. Several lines of evidence suggest dependence of PS shedding on intracellular Ca concentration as well as on interaction between plasma membrane phospholipids and microtubules (MTs), the key components of the cytoskeleton. We investigated the effect of Ca flux and MT assembly on the distribution of PS across, and shedding from, the membranes of erythroid precursors. Cultured human and murine erythroid precursors were treated with the Ca ionophore A23187, the MT assembly enhancer paclitaxel (Taxol) or the inhibitor colchicine. PS externalization and shedding were measured by flow cytometry and the cholesterol/phospholipids in RBC membranes and supernatants, by 1H-NMR. We found that treatment with Taxol or colchicine resulted in a marked increase in PS externalization, while shedding was increased by colchicine but inhibited by Taxol. These results indicate that PS externalization is mediated by Ca flux, and PS shedding by both Ca flux and MT assembly. The cholesterol/phospholipid ratio in the membrane is modified by PS shedding; we now show that it was increased by colchicine and A23187, while taxol had no effect. In summary, the results indicate that the Ca flux and MT depolymerization of erythroid precursors mediate their PS externalization and shedding, which in turn changes their membrane composition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Shedding of Phosphatidylserine from Developing Erythroid Cells Involves Microtubule Depolymerization and Affects Membrane Lipid Composition

Loading next page...
 
/lp/springer_journal/shedding-of-phosphatidylserine-from-developing-erythroid-cells-8azOSA7zYD
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-012-9478-7
Publisher site
See Article on Publisher Site

Abstract

Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, flip-flops to the external leaflet during aging of, or trauma to, cells. A fraction of this PS undergoes shedding into the extracellular milieu. PS externalization and shedding change during maturation of erythroid cells and affect the functioning, senescence and elimination of mature RBCs. Several lines of evidence suggest dependence of PS shedding on intracellular Ca concentration as well as on interaction between plasma membrane phospholipids and microtubules (MTs), the key components of the cytoskeleton. We investigated the effect of Ca flux and MT assembly on the distribution of PS across, and shedding from, the membranes of erythroid precursors. Cultured human and murine erythroid precursors were treated with the Ca ionophore A23187, the MT assembly enhancer paclitaxel (Taxol) or the inhibitor colchicine. PS externalization and shedding were measured by flow cytometry and the cholesterol/phospholipids in RBC membranes and supernatants, by 1H-NMR. We found that treatment with Taxol or colchicine resulted in a marked increase in PS externalization, while shedding was increased by colchicine but inhibited by Taxol. These results indicate that PS externalization is mediated by Ca flux, and PS shedding by both Ca flux and MT assembly. The cholesterol/phospholipid ratio in the membrane is modified by PS shedding; we now show that it was increased by colchicine and A23187, while taxol had no effect. In summary, the results indicate that the Ca flux and MT depolymerization of erythroid precursors mediate their PS externalization and shedding, which in turn changes their membrane composition.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 24, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off