Shear-wave elastography can evaluate annulus fibrosus alteration in adolescent scoliosis

Shear-wave elastography can evaluate annulus fibrosus alteration in adolescent scoliosis Objectives In vitro studies showed that annulus fibrosus lose its integrity in idiopathic scoliosis. Shear-wave ultrasound elastography can be used for non-invasive measurement of shear-wave speed (SWS) in vivo in the annulus fibrosus, a parameter related to its mechanical properties. The main aim was to assess SWS in lumbar annulus fibrosus of scoliotic adolescents and compare it to healthy subjects. Methods SWS was measured in 180 lumbar IVDs (L3L4, L4L5, L5S1) of 30 healthy adolescents (13 ± 1.9 years old) and 30 adolescent idiopathic scoliosis patients (13 ± 2 years old, Cobb angle: 28.8° ± 10.4°). SWS was compared between the scoliosis and healthy control groups. Results In healthy subjects, average SWS (all disc levels pooled) was 3.0 ± 0.3 m/s, whereas in scoliotic patients it was significantly higher at 3.5 ± 0.3 m/s (p = 0.0004; Mann-Whitney test). Differences were also significant at all disc levels. No difference was observed between males and females. No correlation was found with age, weight and height. Conclusion Non-invasive shear-wave ultrasound is a novel method of assessment to quantitative alteration of annulus fibrosus. These preliminary results are promising for considering shear-wave elastography as a biomechanical marker for assessment of idiopathic scoliosis. Key http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Radiology Springer Journals

Shear-wave elastography can evaluate annulus fibrosus alteration in adolescent scoliosis

Loading next page...
 
/lp/springer_journal/shear-wave-elastography-can-evaluate-annulus-fibrosus-alteration-in-snRy5705xY
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by European Society of Radiology
Subject
Medicine & Public Health; Imaging / Radiology; Diagnostic Radiology; Interventional Radiology; Neuroradiology; Ultrasound; Internal Medicine
ISSN
0938-7994
eISSN
1432-1084
D.O.I.
10.1007/s00330-018-5309-2
Publisher site
See Article on Publisher Site

Abstract

Objectives In vitro studies showed that annulus fibrosus lose its integrity in idiopathic scoliosis. Shear-wave ultrasound elastography can be used for non-invasive measurement of shear-wave speed (SWS) in vivo in the annulus fibrosus, a parameter related to its mechanical properties. The main aim was to assess SWS in lumbar annulus fibrosus of scoliotic adolescents and compare it to healthy subjects. Methods SWS was measured in 180 lumbar IVDs (L3L4, L4L5, L5S1) of 30 healthy adolescents (13 ± 1.9 years old) and 30 adolescent idiopathic scoliosis patients (13 ± 2 years old, Cobb angle: 28.8° ± 10.4°). SWS was compared between the scoliosis and healthy control groups. Results In healthy subjects, average SWS (all disc levels pooled) was 3.0 ± 0.3 m/s, whereas in scoliotic patients it was significantly higher at 3.5 ± 0.3 m/s (p = 0.0004; Mann-Whitney test). Differences were also significant at all disc levels. No difference was observed between males and females. No correlation was found with age, weight and height. Conclusion Non-invasive shear-wave ultrasound is a novel method of assessment to quantitative alteration of annulus fibrosus. These preliminary results are promising for considering shear-wave elastography as a biomechanical marker for assessment of idiopathic scoliosis. Key

Journal

European RadiologySpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off