Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation

Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental... In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length (L), bridge angle (γ), joint roughness coefficient (JRC) and normal stress (σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as “interlocking cracks” which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile–shear cracking. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation

Loading next page...
 
/lp/springer_journal/shear-strength-and-cracking-process-of-non-persistent-jointed-rocks-an-0iJ65e0uJE
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1328-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length (L), bridge angle (γ), joint roughness coefficient (JRC) and normal stress (σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as “interlocking cracks” which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile–shear cracking.

Journal

Rock Mechanics and Rock EngineeringSpringer Journals

Published: Oct 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off