Shear layers of a circular cylinder with rotary oscillation

Shear layers of a circular cylinder with rotary oscillation The behavior of the separated shear layers and the near wake of a circular cylinder with small-amplitude rotary oscillations (Ω1 = 0.05−0.15 for f f/f o ≤ 1.25) were investigated experimentally at Re = 3,700. Measurements of an unforced cylinder were also made for 2,000 ≤ Re ≤ 10,000 to better understand the effects of rotary oscillations. The results show that the shear-layer vortices formed closer to the cylinder and the distance separating them was found to decrease with cylinder oscillations. The shear-layer frequency, however, increased with increasing forcing frequency f f. The formation-region length l f decreased significantly with increasing f f while decreased to a lesser extent with increasing normalized oscillation amplitude Ω1. The shear layer also diffused to a length L d larger than that of an unforced cylinder, while the l f-L d-Strouhal frequency offsetting mechanism was generally maintained. The near wake was of lower momentum compared to an unforced cylinder, and the transverse velocity fluctuations associated with the unforced vortex-shedding frequency f o always presented a local peak at f f/f o = 0.5, regardless of Ω1 tested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Shear layers of a circular cylinder with rotary oscillation

Loading next page...
 
/lp/springer_journal/shear-layers-of-a-circular-cylinder-with-rotary-oscillation-SeZjSwFqFv
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0336-9
Publisher site
See Article on Publisher Site

Abstract

The behavior of the separated shear layers and the near wake of a circular cylinder with small-amplitude rotary oscillations (Ω1 = 0.05−0.15 for f f/f o ≤ 1.25) were investigated experimentally at Re = 3,700. Measurements of an unforced cylinder were also made for 2,000 ≤ Re ≤ 10,000 to better understand the effects of rotary oscillations. The results show that the shear-layer vortices formed closer to the cylinder and the distance separating them was found to decrease with cylinder oscillations. The shear-layer frequency, however, increased with increasing forcing frequency f f. The formation-region length l f decreased significantly with increasing f f while decreased to a lesser extent with increasing normalized oscillation amplitude Ω1. The shear layer also diffused to a length L d larger than that of an unforced cylinder, while the l f-L d-Strouhal frequency offsetting mechanism was generally maintained. The near wake was of lower momentum compared to an unforced cylinder, and the transverse velocity fluctuations associated with the unforced vortex-shedding frequency f o always presented a local peak at f f/f o = 0.5, regardless of Ω1 tested.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 27, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off