Sharing a quantum secret without a trusted party

Sharing a quantum secret without a trusted party In a conventional quantum (k, n) threshold scheme, a trusted party shares a secret quantum state with n participants such that any k of those participants can cooperate to recover the original secret, while fewer than k participants obtain no information about the secret. In this paper we show how to construct a quantum (k, n) threshold scheme without the assistance of a trusted party, who generates and distributes shares among the participants. Instead, each participant chooses his private state and contributes the same to the determination of the final secret quantum state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Sharing a quantum secret without a trusted party

Loading next page...
 
/lp/springer_journal/sharing-a-quantum-secret-without-a-trusted-party-Di3tI0lf6b
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-010-0180-3
Publisher site
See Article on Publisher Site

Abstract

In a conventional quantum (k, n) threshold scheme, a trusted party shares a secret quantum state with n participants such that any k of those participants can cooperate to recover the original secret, while fewer than k participants obtain no information about the secret. In this paper we show how to construct a quantum (k, n) threshold scheme without the assistance of a trusted party, who generates and distributes shares among the participants. Instead, each participant chooses his private state and contributes the same to the determination of the final secret quantum state.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 25, 2010

References

  • How to share a secret
    Shamir, A.
  • Quantum secret sharing without entanglement
    Guo, G.P.; Guo, G.C.
  • Bidirectional quantum secret sharing and secret splitting with polarized single photons
    Deng, F.G.; Zhou, H.Y.; Long, G.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off