Shared-Risk Logical Span Groups in Span-Restorable Optical Networks: Analysis and Capacity Planning Model

Shared-Risk Logical Span Groups in Span-Restorable Optical Networks: Analysis and Capacity... In an optical transport network distinct logical groups of lightwave channels between neighboring OXC nodes (called spans) may sometimes be realized over a common physical resource such as a duct or conduit, and hence share a common cause of failure. This is closely related to the concept of shared risk on individual channels or links, called SRLGs, which is relevant to pre-planned path protection schemes with shared capacity on backup paths. But when considering span-restorable networks, shared risk over logical spans (not individual channels) is the corresponding issue of concern. This work considers several aspect of how such shared-risk span groups (SRSG) affect the protection capacity design and other aspects of span-restorable mesh networks. We provide a model for capacity planning any span-restorable network in the presence of a known set of such shared-risk spans and study the relationship between capacity requirements and the number and placement of such situations. This provides guidelines as to how many SRSGs can be sustained before the capacity penalty becomes severe and methods to diagnose which of them are the most limiting to overall protection efficiency. One finding of interest is that if a given percentage of all possible dual-failure combinations incident to a common node are allowed for in the design, then nearly the same percentage of other dual-span failure combinations (any two spans in the network) will also be restorable. We also show that designing a network to withstand even a small number of multi-span co-incident spared-risk span groups will yield a significant improvement in overall dual-failure restorability and hence also in network availability. Photonic Network Communications Springer Journals

Shared-Risk Logical Span Groups in Span-Restorable Optical Networks: Analysis and Capacity Planning Model

Loading next page...
Kluwer Academic Publishers
Copyright © 2005 by Springer Science+Business Media, Inc.
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial