Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons

Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons Massive corticothalamic afferents originating from layer 6a of primary sensory cortical areas modulate sensory responsiveness of thalamocortical neurons and are pivotal for shifting neuronal firing between burst and tonic modes. The influence of the corticothalamic pathways on the firing mode and sensory gain of thalamic neurons has only been extensively examined in anesthetized animals, but has yet to be established in the awake state. We made lesions of the rat barrel cortex and on the following day recorded responses of single thalamocortical and thalamic reticular neurons to a single vibrissal deflection in the somatosensory system during wakefulness. Our results showed that the cortical lesions shifted the response of thalamic neurons towards bursting, elevated the response probability and the gain of thalamocortical neurons, predominantly of recurring responses. In addition, after the lesions, the spontaneous activities of the vibrissa-responsive thalamic neurons, but not those of vibrissa-unresponsive cells, were typified by waxing-and-waning spindle-like rhythmic spiking with frequent bursting. In awake rats with intact cortex, identified layer 6a corticothalamic neurons responded to a single vibrissal deflection with short latencies that matched those of layer 4 neurons, strongly suggesting the existence of an immediate corticothalamic feedback. The present results show the importance of corticothalamic neurons in shaping thalamic activities during wakefulness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons

Loading next page...
 
/lp/springer_journal/shaping-somatosensory-responses-in-awake-rats-cortical-modulation-of-NRqYi0jngK
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-017-1522-z
Publisher site
See Article on Publisher Site

Abstract

Massive corticothalamic afferents originating from layer 6a of primary sensory cortical areas modulate sensory responsiveness of thalamocortical neurons and are pivotal for shifting neuronal firing between burst and tonic modes. The influence of the corticothalamic pathways on the firing mode and sensory gain of thalamic neurons has only been extensively examined in anesthetized animals, but has yet to be established in the awake state. We made lesions of the rat barrel cortex and on the following day recorded responses of single thalamocortical and thalamic reticular neurons to a single vibrissal deflection in the somatosensory system during wakefulness. Our results showed that the cortical lesions shifted the response of thalamic neurons towards bursting, elevated the response probability and the gain of thalamocortical neurons, predominantly of recurring responses. In addition, after the lesions, the spontaneous activities of the vibrissa-responsive thalamic neurons, but not those of vibrissa-unresponsive cells, were typified by waxing-and-waning spindle-like rhythmic spiking with frequent bursting. In awake rats with intact cortex, identified layer 6a corticothalamic neurons responded to a single vibrissal deflection with short latencies that matched those of layer 4 neurons, strongly suggesting the existence of an immediate corticothalamic feedback. The present results show the importance of corticothalamic neurons in shaping thalamic activities during wakefulness.

Journal

Brain Structure and FunctionSpringer Journals

Published: Oct 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off