Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Existence Analysis

Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Existence Analysis We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier–Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier–Stokes system and to the shape optimization problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Existence Analysis

Loading next page...
 
/lp/springer_journal/shape-optimization-for-navier-stokes-equations-with-algebraic-AiQdt4MPb0
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Mathematics; Numerical and Computational Methods ; Mathematical Methods in Physics; Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-009-9066-0
Publisher site
See Article on Publisher Site

Abstract

We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier–Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier–Stokes system and to the shape optimization problem.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Oct 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off