Shape Optimization and Supremal Minimization Approaches in Landslides Modeling

Shape Optimization and Supremal Minimization Approaches in Landslides Modeling The steady-state unidirectional (anti-plane) flow for a Bingham fluid is considered. We take into account the inhomogeneous yield limit of the fluid, which is well adjusted to the description of landslides. The blocking property is analyzed and we introduce the safety factor which is connected to two optimization problems in terms of velocities and stresses. Concerning the velocity analysis the minimum problem in BV(Ω) is equivalent to a shape-optimization problem. The optimal set is the part of the land which slides whenever the loading parameter becomes greater than the safety factor. This is proved in the one-dimensional case and conjectured for the two-dimensional flow. For the stress-optimization problem we give a stream function formulation in order to deduce a minimum problem in W 1,∞ (Ω) and we prove the existence of a minimizer. The L p (Ω) approximation technique is used to get a sequence of minimum problems for smooth functionals. We propose two numerical approaches following the two analysis presented before. First, we describe a numerical method to compute the safety factor through equivalence with the shape-optimization problem. Then the finite-element approach and a Newton method is used to obtain a numerical scheme for the stress formulation. Some numerical results are given in order to compare the two methods. The shape-optimization method is sharp in detecting the sliding zones but the convergence is very sensitive to the choice of the parameters. The stress-optimization method is more robust, gives precise safety factors but the results cannot be easily compiled to obtain the sliding zone. Applied Mathematics and Optimization Springer Journals

Shape Optimization and Supremal Minimization Approaches in Landslides Modeling

Loading next page...
Copyright © 2005 by Springer
Mathematics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial