Shadow price of information in discrete time stochastic optimization

Shadow price of information in discrete time stochastic optimization The shadow price of information has played a central role in stochastic optimization ever since its introduction by Rockafellar and Wets in the mid-seventies. This article studies the concept in an extended formulation of the problem and gives relaxed sufficient conditions for its existence. We allow for general adapted decision strategies, which enables one to establish the existence of solutions and the absence of a duality gap e.g. in various problems of financial mathematics where the usual boundedness assumptions fail. As applications, we calculate conjugates and subdifferentials of integral functionals and conditional expectations of normal integrands. We also give a dual form of the general dynamic programming recursion that characterizes shadow prices of information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Programming Springer Journals

Shadow price of information in discrete time stochastic optimization

Loading next page...
 
/lp/springer_journal/shadow-price-of-information-in-discrete-time-stochastic-optimization-qRER6orZx5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Mathematics of Computing; Numerical Analysis; Combinatorics; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics
ISSN
0025-5610
eISSN
1436-4646
D.O.I.
10.1007/s10107-017-1163-2
Publisher site
See Article on Publisher Site

Abstract

The shadow price of information has played a central role in stochastic optimization ever since its introduction by Rockafellar and Wets in the mid-seventies. This article studies the concept in an extended formulation of the problem and gives relaxed sufficient conditions for its existence. We allow for general adapted decision strategies, which enables one to establish the existence of solutions and the absence of a duality gap e.g. in various problems of financial mathematics where the usual boundedness assumptions fail. As applications, we calculate conjugates and subdifferentials of integral functionals and conditional expectations of normal integrands. We also give a dual form of the general dynamic programming recursion that characterizes shadow prices of information.

Journal

Mathematical ProgrammingSpringer Journals

Published: May 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off