SF-SIMM high-dimensional hyperchaotic map and its performance analysis

SF-SIMM high-dimensional hyperchaotic map and its performance analysis Derived from Sine map and an iterative chaotic map with infinite collapse (ICMIC), a new high-dimensional hyperchaotic map, sinusoidal feedback Sine ICMIC modulation map (SF-SIMM), is proposed. Two-dimensional (2D) model of SF-SIMM is investigated as an example, and its chaotic performances are evaluated. Results show that it has complicated phase space trajectory, infinite equilibrium points, hyperchaotic behaviors, rather large maximum Lyapunov exponent, three typical bifurcations and multiple coexisting attractors with odd symmetry. Furthermore, it has advantages in complexity, distribution characteristics and zero correlation and can generate two independent pseudo-random sequences simultaneously. Therefore, it has good application prospects in secure communication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

SF-SIMM high-dimensional hyperchaotic map and its performance analysis

Loading next page...
 
/lp/springer_journal/sf-simm-high-dimensional-hyperchaotic-map-and-its-performance-analysis-Q7bILX0Y8R
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3601-3
Publisher site
See Article on Publisher Site

Abstract

Derived from Sine map and an iterative chaotic map with infinite collapse (ICMIC), a new high-dimensional hyperchaotic map, sinusoidal feedback Sine ICMIC modulation map (SF-SIMM), is proposed. Two-dimensional (2D) model of SF-SIMM is investigated as an example, and its chaotic performances are evaluated. Results show that it has complicated phase space trajectory, infinite equilibrium points, hyperchaotic behaviors, rather large maximum Lyapunov exponent, three typical bifurcations and multiple coexisting attractors with odd symmetry. Furthermore, it has advantages in complexity, distribution characteristics and zero correlation and can generate two independent pseudo-random sequences simultaneously. Therefore, it has good application prospects in secure communication.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off