Setting the optimal length to be scanned in rows of vines by using mobile terrestrial laser scanners

Setting the optimal length to be scanned in rows of vines by using mobile terrestrial laser scanners Mapping the leaf area index (LAI) by using mobile terrestrial laser scanners (MTLS) is of significance for viticulture. LAI is related to plant vigour and foliar development being an important parameter for many agricultural practices. Since it may present spatial variability within vineyards, it is very interesting monitoring it in an objective repeatable way. Considering the possibility of using on-the-go sensors such as MTLS within an agricultural plot, it is necessary to set a proper length of the row to be scanned at each sample point for a reliable operation of the scanner. Three different row length sections of 0.5, 1, and 2 m have been tested. Data analysis has shown that models required to estimate LAI differ significantly depending on the scanned length of the row; the model required to estimate LAI for short sections (0.5 m) is different from that required for longer sections (1 and 2 m). Of the two models obtained, we recommend using MTLS for scanning row length sections of 1 m because the practical use of the sensor in the field is simplified without compromising the results (there is little variation in the model when the row length section changes from 1 to 2 m). In addition, a sufficient number of sampling points is obtained to support a map of the LAI. Linear regression models using as explanatory variable the tree area index, obtained from the data provided by the scanner, are used to estimate the LAI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Setting the optimal length to be scanned in rows of vines by using mobile terrestrial laser scanners

Loading next page...
 
/lp/springer_journal/setting-the-optimal-length-to-be-scanned-in-rows-of-vines-by-using-DGznlZFJqt
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9451-z
Publisher site
See Article on Publisher Site

Abstract

Mapping the leaf area index (LAI) by using mobile terrestrial laser scanners (MTLS) is of significance for viticulture. LAI is related to plant vigour and foliar development being an important parameter for many agricultural practices. Since it may present spatial variability within vineyards, it is very interesting monitoring it in an objective repeatable way. Considering the possibility of using on-the-go sensors such as MTLS within an agricultural plot, it is necessary to set a proper length of the row to be scanned at each sample point for a reliable operation of the scanner. Three different row length sections of 0.5, 1, and 2 m have been tested. Data analysis has shown that models required to estimate LAI differ significantly depending on the scanned length of the row; the model required to estimate LAI for short sections (0.5 m) is different from that required for longer sections (1 and 2 m). Of the two models obtained, we recommend using MTLS for scanning row length sections of 1 m because the practical use of the sensor in the field is simplified without compromising the results (there is little variation in the model when the row length section changes from 1 to 2 m). In addition, a sufficient number of sampling points is obtained to support a map of the LAI. Linear regression models using as explanatory variable the tree area index, obtained from the data provided by the scanner, are used to estimate the LAI.

Journal

Precision AgricultureSpringer Journals

Published: Apr 26, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off