Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic disease (CMD)

Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic... Cassava mosaic disease (CMD) is a viral disease of the important tropical staple crop cassava (Manihot esculenta) and preferred management involves use of host–plant resistance. The best available resistance is controlled by a single dominant gene. Serial analysis of gene expression (SAGE) was used to analyze the gene expression pattern in a bulk of 40 each of CMD resistant and susceptible genotypes drawn from a gene mapping progeny. Messenger RNA used for the SAGE analysis came from plants that were exposed to heavy disease pressure over a period of 2 years in the field. A total of 12,786 tags were studied, divided into 5733 and 7053 tags from the resistant and susceptible genotypes, respectively. Tag annotation was by PCR amplification using the tag sequence as sense primer and 4000 cassava ESTs generated from the bulk of CMD resistant genotypes. Annotation of more than 30 differentially expressed tags revealed several genes expressed during systemic acquired resistance (SAR) in plants and other genes involved in cell-to-cell and cytoplasm-to-nucleus virus trafficking. Differential expression of the most abundantly expressed tag, corresponding to a beta-tubulin gene, was confirmed by Northern Analysis. RFLP analysis of the tags in the parents and bulks of the CMD mapping progeny revealed only one tag, a WRKY transcription factor, associated with the region bearing the dominant CMD gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic disease (CMD)

Loading next page...
1
 
/lp/springer_journal/serial-analysis-of-gene-expression-sage-of-host-plant-resistance-to-0FP955O6E5
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-3477-8
Publisher site
See Article on Publisher Site

Abstract

Cassava mosaic disease (CMD) is a viral disease of the important tropical staple crop cassava (Manihot esculenta) and preferred management involves use of host–plant resistance. The best available resistance is controlled by a single dominant gene. Serial analysis of gene expression (SAGE) was used to analyze the gene expression pattern in a bulk of 40 each of CMD resistant and susceptible genotypes drawn from a gene mapping progeny. Messenger RNA used for the SAGE analysis came from plants that were exposed to heavy disease pressure over a period of 2 years in the field. A total of 12,786 tags were studied, divided into 5733 and 7053 tags from the resistant and susceptible genotypes, respectively. Tag annotation was by PCR amplification using the tag sequence as sense primer and 4000 cassava ESTs generated from the bulk of CMD resistant genotypes. Annotation of more than 30 differentially expressed tags revealed several genes expressed during systemic acquired resistance (SAR) in plants and other genes involved in cell-to-cell and cytoplasm-to-nucleus virus trafficking. Differential expression of the most abundantly expressed tag, corresponding to a beta-tubulin gene, was confirmed by Northern Analysis. RFLP analysis of the tags in the parents and bulks of the CMD mapping progeny revealed only one tag, a WRKY transcription factor, associated with the region bearing the dominant CMD gene.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off