Sequential Extraction of Valuable Trace Elements from Bayer Process-Derived Waste Red Mud Samples

Sequential Extraction of Valuable Trace Elements from Bayer Process-Derived Waste Red Mud Samples Bayer Process-derived red mud produced in China can be classified into three types according to chemical composition: high-iron diaspore red mud, low-iron diaspore red mud, and gibbsite red mud. The specific chemical and mineral compositions of three such typical Bayer-derived red mud samples have been characterized by XRF, ICP-MS, XRD, and SEM. These results, for example, indicate that GX (a high-iron diaspore red mud) contains more than 1015 μg/g lanthanides, 313 μg/g yttrium, 115 μg/g scandium, and 252 μg/g niobium and that HN (a low-iron diaspore red mud) has a high content of lithium (224 μg/g), whereas SD (a gibbsite red mud) possesses a very low valuable trace element content, except for gallium (59.4 μg/g). A sequential extraction procedure was carried out to assess the leachability of valuable trace elements in these three red mud samples. Applying the extraction procedure, 60% of the yttrium in GX and 65% of the lithium in HN could be extracted which would be of interest for trace metal recovery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sustainable Metallurgy Springer Journals

Sequential Extraction of Valuable Trace Elements from Bayer Process-Derived Waste Red Mud Samples

Loading next page...
 
/lp/springer_journal/sequential-extraction-of-valuable-trace-elements-from-bayer-process-OrQzr0xnBk
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Environment; Sustainable Development; Metallic Materials
ISSN
2199-3823
eISSN
2199-3831
D.O.I.
10.1007/s40831-018-0164-6
Publisher site
See Article on Publisher Site

Abstract

Bayer Process-derived red mud produced in China can be classified into three types according to chemical composition: high-iron diaspore red mud, low-iron diaspore red mud, and gibbsite red mud. The specific chemical and mineral compositions of three such typical Bayer-derived red mud samples have been characterized by XRF, ICP-MS, XRD, and SEM. These results, for example, indicate that GX (a high-iron diaspore red mud) contains more than 1015 μg/g lanthanides, 313 μg/g yttrium, 115 μg/g scandium, and 252 μg/g niobium and that HN (a low-iron diaspore red mud) has a high content of lithium (224 μg/g), whereas SD (a gibbsite red mud) possesses a very low valuable trace element content, except for gallium (59.4 μg/g). A sequential extraction procedure was carried out to assess the leachability of valuable trace elements in these three red mud samples. Applying the extraction procedure, 60% of the yttrium in GX and 65% of the lithium in HN could be extracted which would be of interest for trace metal recovery.

Journal

Journal of Sustainable MetallurgySpringer Journals

Published: Feb 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off