Sequencing and annotated analysis of full genome of Holstein breed bull

Sequencing and annotated analysis of full genome of Holstein breed bull In the present study, we describe the deep sequencing and structural analysis of the Holstein breed bull genome. Our aim was to receive a high-quality Holstein bull genome reference sequence and to describe different types of variations in its genome compared to Hereford breed as a reference. We generated four mate-paired libraries and one fragment library from 30 μg of genomic DNA. Colour space fasta were mapped and paired to the reference cow (Bos taurus) genome assembly from Oct. 2011 (Baylor 4.6.1/bosTau7). Initial sequencing resulted in the 4,864,054,296 of 50-bp reads. Average mapping efficiency was 71.7 % and altogether 3,494,534,136 reads and 157,928,163,086 bp were successfully mapped, resulting in 60 × coverage. This is the highest coverage for bovine genome published so far. Tertiary analysis found 6,362,988 SNPs in the bull’s genome, 4,045,889 heterozygous and 2,317,099 homozygous variants. Annotation revealed that 4,330,337 of all discovered SNPs were annotated in the dbSNP database (build 137) and therefore 2,032,651 SNPs were novel. Large indel variations accounted for the 245,947,845 bp of the variation in entire genome and their number was 312,879. We also found that small indels (number was 633,310) accounted for the total variation of 2,542,552 nucleotides in the genome. Only 106,768 small indels were listed in the dbSNP. Finally, we identified 2,758 inversions in the genome of the bull covering in total 23,099,054 bp of genome’s variation. The largest inversion was 87,440 bp in size. In conclusion, the present study discovered different types of novel variants in bull’s genome after high-coverage sequencing. Better knowledge of the functions of these variations is needed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Sequencing and annotated analysis of full genome of Holstein breed bull

Loading next page...
 
/lp/springer_journal/sequencing-and-annotated-analysis-of-full-genome-of-holstein-breed-RMUWg5kjOv
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-014-9511-5
Publisher site
See Article on Publisher Site

Abstract

In the present study, we describe the deep sequencing and structural analysis of the Holstein breed bull genome. Our aim was to receive a high-quality Holstein bull genome reference sequence and to describe different types of variations in its genome compared to Hereford breed as a reference. We generated four mate-paired libraries and one fragment library from 30 μg of genomic DNA. Colour space fasta were mapped and paired to the reference cow (Bos taurus) genome assembly from Oct. 2011 (Baylor 4.6.1/bosTau7). Initial sequencing resulted in the 4,864,054,296 of 50-bp reads. Average mapping efficiency was 71.7 % and altogether 3,494,534,136 reads and 157,928,163,086 bp were successfully mapped, resulting in 60 × coverage. This is the highest coverage for bovine genome published so far. Tertiary analysis found 6,362,988 SNPs in the bull’s genome, 4,045,889 heterozygous and 2,317,099 homozygous variants. Annotation revealed that 4,330,337 of all discovered SNPs were annotated in the dbSNP database (build 137) and therefore 2,032,651 SNPs were novel. Large indel variations accounted for the 245,947,845 bp of the variation in entire genome and their number was 312,879. We also found that small indels (number was 633,310) accounted for the total variation of 2,542,552 nucleotides in the genome. Only 106,768 small indels were listed in the dbSNP. Finally, we identified 2,758 inversions in the genome of the bull covering in total 23,099,054 bp of genome’s variation. The largest inversion was 87,440 bp in size. In conclusion, the present study discovered different types of novel variants in bull’s genome after high-coverage sequencing. Better knowledge of the functions of these variations is needed.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 26, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off