Sequences surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier protein reductase gene control seed expression in transgenic tobacco

Sequences surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier... The NADH-specific enoyl-acyl carrier protein (ACP) reductase, which catalyses the last reducing step during the fatty acid biosynthesis cycle, is encoded in Arabidopsis thaliana encoded by a single housekeeping gene (ENR-A) which is differentially expressed during plant development. To identify elements involved in its tissue-specific transcriptional control, a fragment comprising the 1470 bp region directly upstream of the ATG start codon of the ENR-A gene was fused to the uidA (GUS) reporter gene and analysed in transgenic Nicotiana tabacum plants. GUS activity found during development of the transgenic plants was similar to endogenous ENR protein levels found in both tobacco and Arabidopsis plants, except for developing flowers. In floral tissue the promoter fragment showed very little activity in contrast to the relatively high level of endogenous ENR expression. Successive deletions from the 5′ and 3′ regions of the promoter fragment revealed the presence of at least three elements which control GUS expression in different stages of development in the transgenic tobacco plants. First, expression in young developing leaves required both the presence of sequences between −329 to −201 relative to the transcription start and part of the untranslated leader comprising the first intron. Second, root-specific GUS expression was still observed after deletion of the 5′-upstream sequences up to 19 bp of the transcription initiation site. Further, the additional removal of the intron from the untranslated leader increased root-specific expression by ca. 4- to 5-fold. Third, high expression in seeds was still observed with the minimal upstream promoter segment of 19 bp. This seed expression level was found to be independent of the presence or absence of the intron in the untranslated leader. Finally, 3′ deletion of the leader sequence up to 17 bp of the transcription start greatly impaired GUS activity during all stages of plant development, suggesting that the deleted sequence of the leader either functions as an enhancer for transcription initiation or stabilizes the mRNA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Sequences surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier protein reductase gene control seed expression in transgenic tobacco

Loading next page...
 
/lp/springer_journal/sequences-surrounding-the-transcription-initiation-site-of-the-eMysHqbjuH
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006129924683
Publisher site
See Article on Publisher Site

Abstract

The NADH-specific enoyl-acyl carrier protein (ACP) reductase, which catalyses the last reducing step during the fatty acid biosynthesis cycle, is encoded in Arabidopsis thaliana encoded by a single housekeeping gene (ENR-A) which is differentially expressed during plant development. To identify elements involved in its tissue-specific transcriptional control, a fragment comprising the 1470 bp region directly upstream of the ATG start codon of the ENR-A gene was fused to the uidA (GUS) reporter gene and analysed in transgenic Nicotiana tabacum plants. GUS activity found during development of the transgenic plants was similar to endogenous ENR protein levels found in both tobacco and Arabidopsis plants, except for developing flowers. In floral tissue the promoter fragment showed very little activity in contrast to the relatively high level of endogenous ENR expression. Successive deletions from the 5′ and 3′ regions of the promoter fragment revealed the presence of at least three elements which control GUS expression in different stages of development in the transgenic tobacco plants. First, expression in young developing leaves required both the presence of sequences between −329 to −201 relative to the transcription start and part of the untranslated leader comprising the first intron. Second, root-specific GUS expression was still observed after deletion of the 5′-upstream sequences up to 19 bp of the transcription initiation site. Further, the additional removal of the intron from the untranslated leader increased root-specific expression by ca. 4- to 5-fold. Third, high expression in seeds was still observed with the minimal upstream promoter segment of 19 bp. This seed expression level was found to be independent of the presence or absence of the intron in the untranslated leader. Finally, 3′ deletion of the leader sequence up to 17 bp of the transcription start greatly impaired GUS activity during all stages of plant development, suggesting that the deleted sequence of the leader either functions as an enhancer for transcription initiation or stabilizes the mRNA.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off