Sequence-based analysis of mutagenized mice

Sequence-based analysis of mutagenized mice Treating mice with ethylnitrosourea (ENU) is an efficient means for mutagenizing spermatogonial cells, and this treatment has been proven effective in a variety of screens for both dominant and recessive mutations. However, a significant problem for this technology is that the efficiency of mutagenesis is assessed most often by the empiric determination of a per-locus mutation frequency by using the specific locus test, which is expensive, time-consuming, and logistically difficult. To approach this question more directly and more efficiently, one can utilize methods of PCR-based mutation detection for the characterization of progeny of mutagenized mice. Since this analysis can be done after a single generation of breeding, it is useful as a rapid means for the assessment of the efficiency of mutagen treatment. Furthermore, it is readily imaginable that this strategy can be applied for the general determination of gene function in a systematic manner. Theoretical considerations and empirical analysis suggest that the per-base mutation frequency for a fractionated-dose treatment protocol is on the order of 1 sequence change per 105 bp. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Sequence-based analysis of mutagenized mice

Loading next page...
 
/lp/springer_journal/sequence-based-analysis-of-mutagenized-mice-M0IN7mHhRD
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010113
Publisher site
See Article on Publisher Site

Abstract

Treating mice with ethylnitrosourea (ENU) is an efficient means for mutagenizing spermatogonial cells, and this treatment has been proven effective in a variety of screens for both dominant and recessive mutations. However, a significant problem for this technology is that the efficiency of mutagenesis is assessed most often by the empiric determination of a per-locus mutation frequency by using the specific locus test, which is expensive, time-consuming, and logistically difficult. To approach this question more directly and more efficiently, one can utilize methods of PCR-based mutation detection for the characterization of progeny of mutagenized mice. Since this analysis can be done after a single generation of breeding, it is useful as a rapid means for the assessment of the efficiency of mutagen treatment. Furthermore, it is readily imaginable that this strategy can be applied for the general determination of gene function in a systematic manner. Theoretical considerations and empirical analysis suggest that the per-base mutation frequency for a fractionated-dose treatment protocol is on the order of 1 sequence change per 105 bp.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 25, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off