Sequence and phylogenetic data indicate that an orthobunyavirus recently detected in the Yucatan Peninsula of Mexico is a novel reassortant of Potosi and Cache Valley viruses

Sequence and phylogenetic data indicate that an orthobunyavirus recently detected in the Yucatan... We determined the complete nucleotide sequences of the small (S) and medium (M) RNA segments of an orthobunyavirus isolated from mosquitoes in the Yucatan Peninsula of Mexico. A 528-nt region of the large (L) RNA segment was also sequenced. The S RNA segment has greatest nucleotide identity to the homologous region of Cache Valley virus (CVV; 98%) followed by Potosi virus (POTV; 89%) and Northway virus (86%). The M RNA segment has 96% nucleotide identity to the homologous region of POTV, and less than 74% nucleotide identity to the homologous regions of all other orthobunyaviruses for which M segment sequence data are available. The L RNA segment has greatest nucleotide identity to the homologous region of POTV (98%) followed by CVV (82%) and Tensaw virus (77%). These data indicate that the virus, tentatively named Cholul virus (CHLV), is a novel reassortant that acquired its S RNA segment from CVV and its M and L RNA segments from POTV. Phylogenetic data support this conclusion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Sequence and phylogenetic data indicate that an orthobunyavirus recently detected in the Yucatan Peninsula of Mexico is a novel reassortant of Potosi and Cache Valley viruses

Loading next page...
 
/lp/springer_journal/sequence-and-phylogenetic-data-indicate-that-an-orthobunyavirus-DeWb7SG0sr
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Biomedicine; Virology; Infectious Diseases; Medical Microbiology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1279-x
Publisher site
See Article on Publisher Site

Abstract

We determined the complete nucleotide sequences of the small (S) and medium (M) RNA segments of an orthobunyavirus isolated from mosquitoes in the Yucatan Peninsula of Mexico. A 528-nt region of the large (L) RNA segment was also sequenced. The S RNA segment has greatest nucleotide identity to the homologous region of Cache Valley virus (CVV; 98%) followed by Potosi virus (POTV; 89%) and Northway virus (86%). The M RNA segment has 96% nucleotide identity to the homologous region of POTV, and less than 74% nucleotide identity to the homologous regions of all other orthobunyaviruses for which M segment sequence data are available. The L RNA segment has greatest nucleotide identity to the homologous region of POTV (98%) followed by CVV (82%) and Tensaw virus (77%). These data indicate that the virus, tentatively named Cholul virus (CHLV), is a novel reassortant that acquired its S RNA segment from CVV and its M and L RNA segments from POTV. Phylogenetic data support this conclusion.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off