Sequence and comparative structural analysis of the murine leukaemia virus amphotropic strain 4070A RNase H domain

Sequence and comparative structural analysis of the murine leukaemia virus amphotropic strain... The sequence of a 900-nucleotide segment (encoding part of the reverse transcriptase, including the entire RNase H domain) of the pol gene of the murine leukaemia virus (MLV) amphotropic strain 4070A is presented. Alignment of the inferred 4070A RNase H amino acid sequence (157 residues) with other MLV RNase H sequences revealed only minor differences compared with the divergence between other retroviral and prokaryotic or eukaryotic RNase H sequences. Only 10 residues were invariant across the entire sample set, but secondary structure predictions for the enzymes from E. coli , yeast, human liver and diverse retroviruses (HIV, Rous sarcoma virus, foamy viruses) supported, in every case, the five β-strands (1 to 5) and four or five α-helices (A, B/C, D, E) that have been identified by crystallography in the RNase H domain of HIV-1 reverse transcriptase and in E. coli RNase H. In the case of MLV, analysis of the RNase H domain sequences inferred from 10 different strains (including the amphotropic 4070A) predicted all five α-helices (A–E), as well as β-strands 4 and 5. However, the N-terminal segment (residues 1–40) was predicted, without exception and with high probability, to fold uniquely into one (or two adjacent) α-helix(es) encompassing residues 13–37, instead of the three β-strands known to exist in the HIV-1 and E. coli enzymes. The unerring consistency between the known and predicted structures of the HIV-1 and E. coli enzymes, and the prediction of the same structural elements (including β-strands 1–3 within the N-terminal segment) for all other (non-MLV) RNase H proteins examined in this study, suggests that the N-terminal segment of the MLV RNase H domain assumes a conformation distinct from that of other retroviral and cellular RNase H molecules. An additional (sixth) β-strand was also predicted uniquely within the C-terminal region of foamy virus RNase H domains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Sequence and comparative structural analysis of the murine leukaemia virus amphotropic strain 4070A RNase H domain

Loading next page...
 
/lp/springer_journal/sequence-and-comparative-structural-analysis-of-the-murine-leukaemia-ezGAUewz0q
Publisher
Springer-Verlag
Copyright
Copyright © Wien by 1999 Springer-Verlag/
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050050632
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial