Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related E8 gene

Separation of cis elements responsive to ethylene, fruit development, and ripening in the... The E8 gene is expressed at a high level during fruit ripening, and is transcriptionally activated by ethylene. We have identified a 428 bp fragment of the E8 5'-flanking region, from -1528 to -1100, that makes a minimal 35S promoter responsive to ethylene. This fragment confers ethylene-responsiveness only in the 5';-to-3'; orientation; in the reverse orientation it results in increased expression in unripe fruit. Interestingly, this ethylene-responsive construct does not have high levels of expression during fruit ripening, indicating that sequences required for high level expression during fruit ripening are separate from sequences required for ethylene response. The ethylene-responsive sequences of the E8 5';-flanking region interact with the same DNA-binding protein that interacts with sequences required for ethylene responsiveness of the coordinately regulated E4 gene. We also conducted experiments to test the function of a second DNA-binding protein that interacts with both E4 and E8 5';-flanking sequences, the E4/E8-binding protein (E4/E8BP). We examined the effect of an internal deletion from -1088 to -863, which includes the binding site for E4/E8BP, on gene expression. This deletion did not affect expression in ripening fruit, and did not impair ethylene responsiveness. The deletion had a negative effect on expression in unripe fruit, but resulted in increased expression in leaves. These results suggest that the E4/E8BP is not critical for high levels of expression during fruit ripening or for ethylene response, but may play a role in organ-specific gene transcription. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related E8 gene

Loading next page...
 
/lp/springer_journal/separation-of-cis-elements-responsive-to-ethylene-fruit-development-jnqag39m5x
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006091928367
Publisher site
See Article on Publisher Site

Abstract

The E8 gene is expressed at a high level during fruit ripening, and is transcriptionally activated by ethylene. We have identified a 428 bp fragment of the E8 5'-flanking region, from -1528 to -1100, that makes a minimal 35S promoter responsive to ethylene. This fragment confers ethylene-responsiveness only in the 5';-to-3'; orientation; in the reverse orientation it results in increased expression in unripe fruit. Interestingly, this ethylene-responsive construct does not have high levels of expression during fruit ripening, indicating that sequences required for high level expression during fruit ripening are separate from sequences required for ethylene response. The ethylene-responsive sequences of the E8 5';-flanking region interact with the same DNA-binding protein that interacts with sequences required for ethylene responsiveness of the coordinately regulated E4 gene. We also conducted experiments to test the function of a second DNA-binding protein that interacts with both E4 and E8 5';-flanking sequences, the E4/E8-binding protein (E4/E8BP). We examined the effect of an internal deletion from -1088 to -863, which includes the binding site for E4/E8BP, on gene expression. This deletion did not affect expression in ripening fruit, and did not impair ethylene responsiveness. The deletion had a negative effect on expression in unripe fruit, but resulted in increased expression in leaves. These results suggest that the E4/E8BP is not critical for high levels of expression during fruit ripening or for ethylene response, but may play a role in organ-specific gene transcription.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off