Separate and combined effects of silicon and selenium on salt tolerance of wheat plants

Separate and combined effects of silicon and selenium on salt tolerance of wheat plants Soil salinity is the leading global abiotic stress which limits agricultural production with an annual increment of 10%. Therefore; a pot experiment was conducted with the aim to alleviate the salinity effects on wheat seedlings through exogenous application of silicon (Si) and selenium (Se). Treatments included in the study were viz. (Ck) control (no NaCl nor Si and Se added), only salinity (50 mM NaCl), salinity + Si (50 mM NaCl with 40 mM Si), salinity + Se (50 mM NaCl with 40 mM Se) and salinity + Si + Se (50 mM NaCl + 40 mM Si + 40 mM Si). The salt stress impaired the growth (root and shoot dry weight, root: shoot ratio, seedlings biomass), water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings. Nonetheless, the foliar application of Si and Se alone and in combination improved the growth, water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings under stressed conditions. Moreover, an increase in antioxidant enzyme activity and accumulation of osmo-protectants (proline, soluble protein and soluble sugar) was noted under stressed conditions, which was more pronounced in wheat seedling which experienced combined application of Si and Se. To conclude that, foliar application of Si alone mitigated the adverse effect of salinity, while the combined application of Si and Se was proved to be even more effective in alleviating the toxic effects of salinity stress on wheat seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Separate and combined effects of silicon and selenium on salt tolerance of wheat plants

Loading next page...
 
/lp/springer_journal/separate-and-combined-effects-of-silicon-and-selenium-on-salt-90h5CHBr0r
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717030141
Publisher site
See Article on Publisher Site

Abstract

Soil salinity is the leading global abiotic stress which limits agricultural production with an annual increment of 10%. Therefore; a pot experiment was conducted with the aim to alleviate the salinity effects on wheat seedlings through exogenous application of silicon (Si) and selenium (Se). Treatments included in the study were viz. (Ck) control (no NaCl nor Si and Se added), only salinity (50 mM NaCl), salinity + Si (50 mM NaCl with 40 mM Si), salinity + Se (50 mM NaCl with 40 mM Se) and salinity + Si + Se (50 mM NaCl + 40 mM Si + 40 mM Si). The salt stress impaired the growth (root and shoot dry weight, root: shoot ratio, seedlings biomass), water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings. Nonetheless, the foliar application of Si and Se alone and in combination improved the growth, water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings under stressed conditions. Moreover, an increase in antioxidant enzyme activity and accumulation of osmo-protectants (proline, soluble protein and soluble sugar) was noted under stressed conditions, which was more pronounced in wheat seedling which experienced combined application of Si and Se. To conclude that, foliar application of Si alone mitigated the adverse effect of salinity, while the combined application of Si and Se was proved to be even more effective in alleviating the toxic effects of salinity stress on wheat seedlings.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off