Sensor-Based Balance Measures Outperform Modified Balance Error Scoring System in Identifying Acute Concussion

Sensor-Based Balance Measures Outperform Modified Balance Error Scoring System in Identifying... Balance assessment is an integral component of concussion evaluation and management. Although the modified balance error scoring system (mBESS) is the conventional clinical tool, objective metrics derived from wearable inertial sensors during the mBESS may increase sensitivity in detecting subtle balance deficits post-concussion. The aim of this study was to identify which stance condition and postural sway metrics obtained from an inertial sensor placed on the lumbar spine during the mBESS best discriminate athletes with acute concussion. Fifty-two college athletes in the acute phase of concussion and seventy-six controls participated in this study. Inertial sensor-based measures objectively detected group differences in the acutely concussed group of athletes while the clinical mBESS did not (p < 0.001 and p = 0.06, respectively). Mediolateral postural sway during the simplest condition of the mBESS (double stance) best classified those with acute concussion. Inertial sensors provided a sensitive and objective measure of balance in acute concussion. These results may be developed into practical guidelines to improve and simplify postural sway analysis post-concussion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Biomedical Engineering Springer Journals

Sensor-Based Balance Measures Outperform Modified Balance Error Scoring System in Identifying Acute Concussion

Loading next page...
 
/lp/springer_journal/sensor-based-balance-measures-outperform-modified-balance-error-300N0cwEmC
Publisher
Springer US
Copyright
Copyright © 2017 by Biomedical Engineering Society
Subject
Biomedicine; Biomedicine, general; Biomedical Engineering; Biological and Medical Physics, Biophysics; Classical Mechanics; Biochemistry, general
ISSN
0090-6964
eISSN
1573-9686
D.O.I.
10.1007/s10439-017-1856-y
Publisher site
See Article on Publisher Site

Abstract

Balance assessment is an integral component of concussion evaluation and management. Although the modified balance error scoring system (mBESS) is the conventional clinical tool, objective metrics derived from wearable inertial sensors during the mBESS may increase sensitivity in detecting subtle balance deficits post-concussion. The aim of this study was to identify which stance condition and postural sway metrics obtained from an inertial sensor placed on the lumbar spine during the mBESS best discriminate athletes with acute concussion. Fifty-two college athletes in the acute phase of concussion and seventy-six controls participated in this study. Inertial sensor-based measures objectively detected group differences in the acutely concussed group of athletes while the clinical mBESS did not (p < 0.001 and p = 0.06, respectively). Mediolateral postural sway during the simplest condition of the mBESS (double stance) best classified those with acute concussion. Inertial sensors provided a sensitive and objective measure of balance in acute concussion. These results may be developed into practical guidelines to improve and simplify postural sway analysis post-concussion.

Journal

Annals of Biomedical EngineeringSpringer Journals

Published: May 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off