Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry

Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three... This study investigates the effect of the choice of convective parameterization (CP) scheme on the simulated tracks of three intense tropical cyclones (TCs), using the Weather Research and Forecasting (WRF) model. We focus on diagnosing the competing influences of large-scale steering flow, beta drift and convectively induced changes in track, as represented by four different CP schemes (Kain–Fritsch (KF), Betts–Miller–Janjic (BMJ), Grell-3D (G-3), and the Tiedtke (TD) scheme). The sensitivity of the results to initial conditions, model domain size and shallow convection is also tested. We employ a diagnostic technique by Chan et al. (J Atmos Sci 59:1317–1336, 2002) that separates the influence of the large-scale steering flow, beta drift and the modifications of the steering flow by the storm-scale convection. The combined effect of the steering flow and the beta drift causes TCs typically to move in the direction of the wavenumber-1 (WN-1) cyclonic potential vorticity tendency (PVT). In instances of asymmetrical TCs, the simulated TC motion does not necessarily match the motion expected from the WN-1 PVT due to changes in the convective pattern. In the present study, we test this concept in the WRF simulations and investigate whether if the diagnosed motion from the WN-1 PVT and the TC motion do not match, this can be related to the emerging evolution of changes in convective structure. Several systematic results are found across the three cyclone cases. The sensitivity of TC track to initial conditions (the initialisation time and model domain size) is less than the sensitivity of TC track to changing the CP scheme. The simulated track is not overly sensitive to shallow convection in the KF, BMJ, and TD schemes, compared to the track difference between CP schemes. The G3 scheme, however, is highly sensitive to shallow convection being used. Furthermore, while agreement between the simulated TC track direction and the WN-1 diagnostic is usually good, there are important periods of differences that are often associated with model-generated convective asymmetries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meteorology and Atmospheric Physics Springer Journals

Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry

Loading next page...
 
/lp/springer_journal/sensitivity-of-hurricane-track-to-cumulus-parameterization-schemes-in-LGjEzEna8w
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Earth Sciences; Atmospheric Sciences; Meteorology; Math. Appl. in Environmental Science; Terrestrial Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0177-7971
eISSN
1436-5065
D.O.I.
10.1007/s00703-016-0472-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial