Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms

Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms The low cell densities of diatoms and other phytoplankton in culture has precluded the use of classical RNA analysis techniques for routine studies of gene expression in large numbers of samples. This has seriously hampered studies of the basic biology of such organisms. To circumvent this problem, we have developed a high-throughput semi-quantitative RT-PCR-based protocol and used it to monitor expression of a gene encoding a fucoxanthin, chlorophyll a/c-binding protein (FCP) in the centric planktonic diatom Thalassiosira weissflogii. Analysis of FCP gene expression in dark-adapted diatom cultures revealed that mRNA levels increase 5- to 6-fold in response to white light irradiation and peak around 6 to 8 h. To determine the photoreceptors involved in this response action spectra of FCP gene expression were determined using the Okazaki large spectrograph. Responses consistent with the presence of cryptochrome-, rhodopsin- and phytochrome-type receptors could be detected. The apparent presence of phytochrome-mediated responses is of particular interest given the low fluences of red and far-red light wavelengths in the marine environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms

Loading next page...
 
/lp/springer_journal/semi-quantitative-rt-pcr-analysis-of-photoregulated-gene-expression-in-N9xnMkPLen
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006256300969
Publisher site
See Article on Publisher Site

Abstract

The low cell densities of diatoms and other phytoplankton in culture has precluded the use of classical RNA analysis techniques for routine studies of gene expression in large numbers of samples. This has seriously hampered studies of the basic biology of such organisms. To circumvent this problem, we have developed a high-throughput semi-quantitative RT-PCR-based protocol and used it to monitor expression of a gene encoding a fucoxanthin, chlorophyll a/c-binding protein (FCP) in the centric planktonic diatom Thalassiosira weissflogii. Analysis of FCP gene expression in dark-adapted diatom cultures revealed that mRNA levels increase 5- to 6-fold in response to white light irradiation and peak around 6 to 8 h. To determine the photoreceptors involved in this response action spectra of FCP gene expression were determined using the Okazaki large spectrograph. Responses consistent with the presence of cryptochrome-, rhodopsin- and phytochrome-type receptors could be detected. The apparent presence of phytochrome-mediated responses is of particular interest given the low fluences of red and far-red light wavelengths in the marine environment.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off