Self-tuning management of update-intensive multidimensional data in clusters of workstations

Self-tuning management of update-intensive multidimensional data in clusters of workstations Contemporary applications continuously modify large volumes of multidimensional data that must be accessed efficiently and, more importantly, must be updated in a timely manner. Single-server storage approaches are insufficient when managing such volumes of data, while the high frequency of data modification render classical indexing methods inefficient. To address these two problems we introduce a distributed storage manager for multidimensional data based on a Cluster-of-Workstations. The manager addresses the above challenges through a set of mechanisms that, through selective on-line data reorganization, collectively maintain a balanced load across a cluster of workstations. With the help of both a highly efficient and speedy self-tuning mechanism, based on a new data structure called stat -index, as well as a query aggregation and clustering algorithm, our storage manager attains short query response times even in the presence of massive modifications and highly skewed access patterns. Furthermore, we provide a data migration cost model used to determine the best data redistribution strategy. Through extensive experimentation with our prototype, we establish that our storage manager can sustain significant update rates with minimal overhead. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Self-tuning management of update-intensive multidimensional data in clusters of workstations

Loading next page...
 
/lp/springer_journal/self-tuning-management-of-update-intensive-multidimensional-data-in-2LwcjklyPj
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0121-2
Publisher site
See Article on Publisher Site

Abstract

Contemporary applications continuously modify large volumes of multidimensional data that must be accessed efficiently and, more importantly, must be updated in a timely manner. Single-server storage approaches are insufficient when managing such volumes of data, while the high frequency of data modification render classical indexing methods inefficient. To address these two problems we introduce a distributed storage manager for multidimensional data based on a Cluster-of-Workstations. The manager addresses the above challenges through a set of mechanisms that, through selective on-line data reorganization, collectively maintain a balanced load across a cluster of workstations. With the help of both a highly efficient and speedy self-tuning mechanism, based on a new data structure called stat -index, as well as a query aggregation and clustering algorithm, our storage manager attains short query response times even in the presence of massive modifications and highly skewed access patterns. Furthermore, we provide a data migration cost model used to determine the best data redistribution strategy. Through extensive experimentation with our prototype, we establish that our storage manager can sustain significant update rates with minimal overhead.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2009

References

  • Distributed data structures: a case study
    Ellis, C.
  • Fast incremental maintenance of approximate histograms
    Gibbons, P.B.; Matias, Y.; Poosala, V.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off