Self-synchronization of the protein synthesis rhythm in HaCaT cultures of human keratinocytes

Self-synchronization of the protein synthesis rhythm in HaCaT cultures of human keratinocytes In cultures of human keratinocytes HaCaT contained in a serum-free medium on glass, a circahoralian rhythm of protein synthesis was found similar to the one in hepatocytes in vitro. The intensity of the synthesis was determined by the inclusion of 3H-leucine corrected for the pool of free marked leucine. Rhythm was studied in washed 1- or 2-day cultures after the change of the medium. The medium conditioned with keratinocytes HaCaT synchronized the rarefied hepatocyte cultures nonsynchronous in the control. Therefore, the keratinocytes liberate synchronizing factors into the medium. A BAPTA-AM chelator of calcium ions eliminates the protein synthesis rhythm both in dense hepatocyte cultures synchronous in the control and in the HaCaT keratinocyte cultures. The effect of the H7 inhibitor of protein kinases was analogous. Thus, both in keratinocytes and hepatocytes, self-synchronization of fluctuations of the intensity of protein synthesis takes place. The mechanism of self-synchronization is the calcium-depending phosphorylation of cell proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Self-synchronization of the protein synthesis rhythm in HaCaT cultures of human keratinocytes

Loading next page...
 
/lp/springer_journal/self-synchronization-of-the-protein-synthesis-rhythm-in-hacat-cultures-sUIoReLFQN
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360411040023
Publisher site
See Article on Publisher Site

Abstract

In cultures of human keratinocytes HaCaT contained in a serum-free medium on glass, a circahoralian rhythm of protein synthesis was found similar to the one in hepatocytes in vitro. The intensity of the synthesis was determined by the inclusion of 3H-leucine corrected for the pool of free marked leucine. Rhythm was studied in washed 1- or 2-day cultures after the change of the medium. The medium conditioned with keratinocytes HaCaT synchronized the rarefied hepatocyte cultures nonsynchronous in the control. Therefore, the keratinocytes liberate synchronizing factors into the medium. A BAPTA-AM chelator of calcium ions eliminates the protein synthesis rhythm both in dense hepatocyte cultures synchronous in the control and in the HaCaT keratinocyte cultures. The effect of the H7 inhibitor of protein kinases was analogous. Thus, both in keratinocytes and hepatocytes, self-synchronization of fluctuations of the intensity of protein synthesis takes place. The mechanism of self-synchronization is the calcium-depending phosphorylation of cell proteins.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off