Self-organization process under electrolytic formation of nanostructures in silicon-based semi-conducting systems

Self-organization process under electrolytic formation of nanostructures in silicon-based... A role of surface processes in the developing dynamics of electrochemical reactions between silicon and fluorine-containing electrolytes during the pore-formation in silicon matrix, which is required for the surface and volume nanostructuring technologies, is examined. The charge exchange processes between the media via the surface were shown to be responsible for the observed anodizing regimes: stable, oscillation, and chaotic. The proposed approach enables one to explain the anodizing regime as associated with synchronized variations of the pore shapes and the global oscillation processes in the silicon/electrolyte system. The data obtained may be applied to the engineering of three-dimensional electron systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Self-organization process under electrolytic formation of nanostructures in silicon-based semi-conducting systems

Loading next page...
 
/lp/springer_journal/self-organization-process-under-electrolytic-formation-of-4Losf7mlwv
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S106373971406002X
Publisher site
See Article on Publisher Site

Abstract

A role of surface processes in the developing dynamics of electrochemical reactions between silicon and fluorine-containing electrolytes during the pore-formation in silicon matrix, which is required for the surface and volume nanostructuring technologies, is examined. The charge exchange processes between the media via the surface were shown to be responsible for the observed anodizing regimes: stable, oscillation, and chaotic. The proposed approach enables one to explain the anodizing regime as associated with synchronized variations of the pore shapes and the global oscillation processes in the silicon/electrolyte system. The data obtained may be applied to the engineering of three-dimensional electron systems.

Journal

Russian MicroelectronicsSpringer Journals

Published: Nov 12, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off