Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses

Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris... Self-incompatibility is widespread in the grasses and it is proposed that the grasses share a common incompatibility mechanism that is distinct from those operating in the dicotyledonous species studied in great detail. Where good genetic data are available, all grass species appear to have an incompatibility mechanism controlled by two unlinked loci, S and Z. A putative S gene has been cloned from Phalaris coerulescens. This gene is characterized by two major domains: an allele specificity domain and a thioredoxin catalytic domain. A family of sequences with varying degrees of homology to this gene has been identified among 15 grass species covering all subfamilies of the Poaceae. These S-related sequences appear to be present in the grass family regardless of self-compatibility. Evidence is presented to show that at least one of the sequences is transcribed, suggesting a functional gene. In contrast to the high expression of the S gene in Phalaris pollen, expression of the related gene in the pollen (or anthers) of the grass species examined was so low that RNA gel blot analysis failed to display a significant signal. However, reverse transcription-based polymerase chain reaction (RT-PCR) successfully amplified the region corresponding to the S thioredoxin domain from 10 of the grass species. With grasses other than Phalaris, RT-PCR showed limited success in amplifying the region corresponding to the S variable portion at the 5′ end of the Phalaris S gene. Sequencing of the PCR-amplified S thioredoxin region from wheat, barley, rye and Dactylis revealed that this is a highly conserved gene with 94–97% sequence similarity with the corresponding Phalaris S gene. The conservation of sequence and ubiquitous expression of the gene across the grass family strongly suggest that the S-related gene is carrying out a significant biological function in the Poaceae. On the basis of these findings, a model for the evolution of the S self-incompatibility gene in the grasses is proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses

Loading next page...
 
/lp/springer_journal/self-incompatibility-in-the-grasses-evolutionary-relationship-of-the-s-y2guGXEomP
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005802327900
Publisher site
See Article on Publisher Site

Abstract

Self-incompatibility is widespread in the grasses and it is proposed that the grasses share a common incompatibility mechanism that is distinct from those operating in the dicotyledonous species studied in great detail. Where good genetic data are available, all grass species appear to have an incompatibility mechanism controlled by two unlinked loci, S and Z. A putative S gene has been cloned from Phalaris coerulescens. This gene is characterized by two major domains: an allele specificity domain and a thioredoxin catalytic domain. A family of sequences with varying degrees of homology to this gene has been identified among 15 grass species covering all subfamilies of the Poaceae. These S-related sequences appear to be present in the grass family regardless of self-compatibility. Evidence is presented to show that at least one of the sequences is transcribed, suggesting a functional gene. In contrast to the high expression of the S gene in Phalaris pollen, expression of the related gene in the pollen (or anthers) of the grass species examined was so low that RNA gel blot analysis failed to display a significant signal. However, reverse transcription-based polymerase chain reaction (RT-PCR) successfully amplified the region corresponding to the S thioredoxin domain from 10 of the grass species. With grasses other than Phalaris, RT-PCR showed limited success in amplifying the region corresponding to the S variable portion at the 5′ end of the Phalaris S gene. Sequencing of the PCR-amplified S thioredoxin region from wheat, barley, rye and Dactylis revealed that this is a highly conserved gene with 94–97% sequence similarity with the corresponding Phalaris S gene. The conservation of sequence and ubiquitous expression of the gene across the grass family strongly suggest that the S-related gene is carrying out a significant biological function in the Poaceae. On the basis of these findings, a model for the evolution of the S self-incompatibility gene in the grasses is proposed.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off