Self-healing hybrid coating of phytic acid/silane for improving the corrosion resistance of magnesium alloy

Self-healing hybrid coating of phytic acid/silane for improving the corrosion resistance of... In order to improve the corrosion resistance of a biodegradable magnesium alloy, a series of phytic acid/3-aminopropyltrimethoxysilane (γ-APS) hybrid coatings was prepared on AZ31 magnesium alloys by dipping the magnesium alloy into the mixing solution of phytic acid and γ-APS. During the preparation of hybrid coatings, the pH values of the mixing solutions greatly affected the uniformity of the coatings and subsequently influenced their corrosion resistance. Electrochemical tests indicated that the hybrid coating prepared in the solution of pH = 8.0 could highly improve corrosion resistance of AZ31 magnesium alloys. Meanwhile, corrosion current density of the hybrid coating coated sample was significantly decreased from the uncoated sample of 138.1 ± 11.9 to 8.5 ± 0.8 μA cm−2. Immersion test in simulated body fluid revealed that the cracks on the surface of the hybrid coating gradually healed up during the lengthy immersion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Coatings Technology and Research Springer Journals

Self-healing hybrid coating of phytic acid/silane for improving the corrosion resistance of magnesium alloy

Loading next page...
 
/lp/springer_journal/self-healing-hybrid-coating-of-phytic-acid-silane-for-improving-the-PfbZgCMt0z
Publisher
Springer US
Copyright
Copyright © 2018 by American Coatings Association
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Polymer Sciences; Industrial Chemistry/Chemical Engineering; Materials Science, general
ISSN
1547-0091
eISSN
1935-3804
D.O.I.
10.1007/s11998-017-0014-7
Publisher site
See Article on Publisher Site

Abstract

In order to improve the corrosion resistance of a biodegradable magnesium alloy, a series of phytic acid/3-aminopropyltrimethoxysilane (γ-APS) hybrid coatings was prepared on AZ31 magnesium alloys by dipping the magnesium alloy into the mixing solution of phytic acid and γ-APS. During the preparation of hybrid coatings, the pH values of the mixing solutions greatly affected the uniformity of the coatings and subsequently influenced their corrosion resistance. Electrochemical tests indicated that the hybrid coating prepared in the solution of pH = 8.0 could highly improve corrosion resistance of AZ31 magnesium alloys. Meanwhile, corrosion current density of the hybrid coating coated sample was significantly decreased from the uncoated sample of 138.1 ± 11.9 to 8.5 ± 0.8 μA cm−2. Immersion test in simulated body fluid revealed that the cracks on the surface of the hybrid coating gradually healed up during the lengthy immersion.

Journal

Journal of Coatings Technology and ResearchSpringer Journals

Published: Jan 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off