Self-gravitating fluid systems and galactic dark matter

Self-gravitating fluid systems and galactic dark matter We study gravitational collapse with anisotropic pressures, whose end stage can mimic space–times that are seeded by galactic dark matter. To this end, we identify a class of space–times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all radial distances. These have a naked singularity at the origin. An example of such a space–time is seen to be the Bertrand space–time discovered by Perlick, that admits closed, stable orbits at all radii. Using relativistic two-fluid models, we show that our galactic space–times might indicate exotic matter, i.e one of the component fluids may have negative pressure for a certain asymptotic fall off of the associated mass density, in the Newtonian limit. We complement this analysis by studying some simple examples of Newtonian two-fluid systems, and compare this with the Newtonian limit of the relativistic systems considered. General Relativity and Gravitation Springer Journals

Self-gravitating fluid systems and galactic dark matter

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Physics; Theoretical, Mathematical and Computational Physics; Classical and Quantum Gravitation, Relativity Theory; Differential Geometry; Astronomy, Astrophysics and Cosmology; Quantum Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial