Self-fertilization and inbreeding depression in three ascidian species that differ in genetic dispersal potential

Self-fertilization and inbreeding depression in three ascidian species that differ in genetic... Although self-fertilization can mitigate the costs of sexual reproduction, many hermaphroditic marine invertebrates avoid selfing, presumably because of inbreeding depression. Eventually, successive generations of inbreeding are expected to reduce genetic load, but selfing cannot evolve for future benefits. Initial inbreeding costs of selfing could be offset by the immediate benefits of local adaptation and mating assurance, both of which are more likely in species with limited gene flow. We compared the likelihood of selfing and the magnitude of inbreeding depression among three ascidian species (Molgula provisionalis, Ciona intestinalis, and Botryllus schlosseri) that were known a priori to differ in larval dispersal potential. Selfing potential exhibited a negative association, and inbreeding depression a positive association with dispersal potential. M. provisionalis, with highly philopatric larvae, had no apparent barrier to self-fertilization and exhibited little evidence of inbreeding depression (ratio of survival of self to outcross progeny 10 weeks after metamorphosis was 0.999). By contrast, C. intestinalis, with highly dispersive larvae, exhibited low levels of self-fertilization in flowing water and high levels of inbreeding depression (survival ratio 14 weeks after metamorphosis of 0.274). B. schlosseri larvae have intermediate dispersal capabilities, yet exhibited low likelihood of self-fertilization and high magnitude of inbreeding depression (survival ratio 10 weeks after metamorphosis of 0.310); however, extremely long-lived sperm contribute to gene flow in B. schlosseri. These results suggest that in marine hermaphrodites, gene flow, self-fertilization, and inbreeding depression should be evaluated as an integrated suite of traits, not independent characters. Marine Biology Springer Journals

Self-fertilization and inbreeding depression in three ascidian species that differ in genetic dispersal potential

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Environment; Marine & Freshwater Sciences; Freshwater & Marine Ecology; Oceanography; Microbiology; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial