Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors

Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal... Flexible thin-film supercapacitors with high specific capacitance are highly desirable for modern wearable or micro-sized electrical and electronic applications. In this contribution, Ni–Co hydroxides (NCH) nanosheets were deposited on top of Ni–Cu alloy (NCA) nanowire arrays forming a freestanding thin-film composite electrode with hierarchical structure for supercapacitors. During electrochemical cycling, the dissolution of Cu into Cu ions will create more active sites on NCA, and the re-deposited copper oxide can be coated onto NCH, giving rise to substantial increase in specific capacitance with cycling. Meanwhile, NCA and NCH have excellent conductivity, thus leading to excellent rate performance. This flexible thin-film electrode delivers an ultrahigh initial specific capacitance of 0.63 F·cm−2 (or 781.3 F·cm−3). During charge–discharge cycles, the specific capacitance can increase up to 1.18 F·cm−2 (or 1475 F·cm−3) along with the “self-etching” process. The electrode presents a better specific capacitance and rate capability compared with previously reported flexible thin-film electrode, and this novel design of etching technique may expand to other binary or ternary materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rare Metals Springer Journals

Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors

Loading next page...
 
/lp/springer_journal/self-etching-ni-co-hydroxides-ni-cu-nanowire-arrays-with-enhancing-xZGo2fLQPL
Publisher
Nonferrous Metals Society of China
Copyright
Copyright © 2017 by The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg
Subject
Materials Science; Metallic Materials; Nanotechnology; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films; Inorganic Chemistry; Physical Chemistry
ISSN
1001-0521
eISSN
1867-7185
D.O.I.
10.1007/s12598-017-0884-y
Publisher site
See Article on Publisher Site

Abstract

Flexible thin-film supercapacitors with high specific capacitance are highly desirable for modern wearable or micro-sized electrical and electronic applications. In this contribution, Ni–Co hydroxides (NCH) nanosheets were deposited on top of Ni–Cu alloy (NCA) nanowire arrays forming a freestanding thin-film composite electrode with hierarchical structure for supercapacitors. During electrochemical cycling, the dissolution of Cu into Cu ions will create more active sites on NCA, and the re-deposited copper oxide can be coated onto NCH, giving rise to substantial increase in specific capacitance with cycling. Meanwhile, NCA and NCH have excellent conductivity, thus leading to excellent rate performance. This flexible thin-film electrode delivers an ultrahigh initial specific capacitance of 0.63 F·cm−2 (or 781.3 F·cm−3). During charge–discharge cycles, the specific capacitance can increase up to 1.18 F·cm−2 (or 1475 F·cm−3) along with the “self-etching” process. The electrode presents a better specific capacitance and rate capability compared with previously reported flexible thin-film electrode, and this novel design of etching technique may expand to other binary or ternary materials.

Journal

Rare MetalsSpringer Journals

Published: Jun 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off