Self-assembly of the polymer brush-grafted silica colloidalarray for recognition of proteins

Self-assembly of the polymer brush-grafted silica colloidalarray for recognition of proteins Three-dimensional photonic crystal sensors are attractive platforms for autonomous chemical sensing and colorimetric bioassays. At present, the photonic crystal sensors with inverse opal structure were extensively studied, which swells or shrinks in response to the analytes. However, the fabrication of inverse opal sensors still remains a major challenge. Herein, we propose a simple and versatile approach to fabricate 3D opal photonic sensors. This photonic crystal is fabricated via assembly of monodispersed silica particles grafted with linear polymeric ligands (SiO2@LPs). Acrylic acid (negatively charged monomer) and N-tert-butylacrylamide (hydrophobic monomer) were incorporated with N-isopropylacrylamide to achieve strong affinity between the designed polymer ligands and proteins. The proposed photonic crystal displays a maximum redshift of 23 nm in response to 2 mg/mL lysozyme, accompanied by the structure color change from blue to green. Compared to the cross-linked polymers, the linear polymer with flexible structure allows the colloidal array to recognize lysozyme with higher sensitivity (as low as 5 μg/mL) and broader linearity (from 5 to 2000 μg/mL in aqueous media). In the future, this photonic crystal sensor can be used as universal tools for the detection of a broad range of analytes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical and Bioanalytical Chemistry Springer Journals

Self-assembly of the polymer brush-grafted silica colloidalarray for recognition of proteins

Loading next page...
 
/lp/springer_journal/self-assembly-of-the-polymer-brush-grafted-silica-colloidalarray-for-Pot0nHMgQj
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Analytical Chemistry; Biochemistry, general; Laboratory Medicine; Characterization and Evaluation of Materials; Food Science; Monitoring/Environmental Analysis
ISSN
1618-2642
eISSN
1618-2650
D.O.I.
10.1007/s00216-017-0477-5
Publisher site
See Article on Publisher Site

Abstract

Three-dimensional photonic crystal sensors are attractive platforms for autonomous chemical sensing and colorimetric bioassays. At present, the photonic crystal sensors with inverse opal structure were extensively studied, which swells or shrinks in response to the analytes. However, the fabrication of inverse opal sensors still remains a major challenge. Herein, we propose a simple and versatile approach to fabricate 3D opal photonic sensors. This photonic crystal is fabricated via assembly of monodispersed silica particles grafted with linear polymeric ligands (SiO2@LPs). Acrylic acid (negatively charged monomer) and N-tert-butylacrylamide (hydrophobic monomer) were incorporated with N-isopropylacrylamide to achieve strong affinity between the designed polymer ligands and proteins. The proposed photonic crystal displays a maximum redshift of 23 nm in response to 2 mg/mL lysozyme, accompanied by the structure color change from blue to green. Compared to the cross-linked polymers, the linear polymer with flexible structure allows the colloidal array to recognize lysozyme with higher sensitivity (as low as 5 μg/mL) and broader linearity (from 5 to 2000 μg/mL in aqueous media). In the future, this photonic crystal sensor can be used as universal tools for the detection of a broad range of analytes.

Journal

Analytical and Bioanalytical ChemistrySpringer Journals

Published: Jul 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off