Access the full text.
Sign up today, get DeepDyve free for 14 days.
By employing the virtual machines (VMs) consolidation technique at a virtualized data center, optimal mapping of VMs to physical machines (PMs) can be performed. The type of optimization approach and the policy of detecting the appropriate time to implement the consolidation process are influential in the performance of the consolidation technique. In a majority of researches, the consolidation approach merely focuses on the management of underloaded or overloaded PMs, while a number of VMs could also be in an underload or overload state. Managing an abnormal state of VM results in the postponement of PM getting into an abnormal state as well and affects the implementation time of the consolidation process. For the aim of optimal VM consolidation in this research, a self-adaptive architecture is presented to detect and manage underloaded and overloaded VMs /PMs in reaction to workload changes in the data center. The goal of consolidation process is employing the minimum number of active VMs and PMs, while guaranteeing the quality of service (QoS). Assessment criteria of QoS are two parameters including average number of requests in the PM buffer and average waiting time in the VM. To evaluate these two parameters, a probabilistic model of the data center is proposed by applying the queuing theory. The assessment results of the probabilistic model form a basis for decision-making in the modules of the proposed architecture. Numerical results obtained from the assessment of the probabilistic model via discrete-event simulator under various parameter settings confirm the efficiency of the proposed architecture in achieving the aims of the consolidation process.
Cluster Computing – Springer Journals
Published: Jun 6, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.