Selectivity estimators for multidimensional range queries over real attributes

Selectivity estimators for multidimensional range queries over real attributes Estimating the selectivity of multidimensional range queries over real valued attributes has significant applications in data exploration and database query optimization. In this paper, we consider the following problem: given a table of d attributes whose domain is the real numbers and a query that specifies a range in each dimension, find a good approximation of the number of records in the table that satisfy the query. The simplest approach to tackle this problem is to assume that the attributes are independent. More accurate estimators try to capture the joint data distribution of the attributes. In databases, such estimators include the construction of multidimensional histograms, random sampling, or the wavelet transform. In statistics, kernel estimation techniques are being used. Many traditional approaches assume that attribute values come from discrete, finite domains, where different values have high frequencies. However, for many novel applications (as in temporal, spatial, and multimedia databases) attribute values come from the infinite domain of real numbers. Consequently, each value appears very infrequently, a characteristic that affects the behavior and effectiveness of the estimator. Moreover, real-life data exhibit attribute correlations that also affect the estimator. We present a new histogram technique that is designed to approximate the density of multidimensional datasets with real attributes. Our technique defines buckets of variable size and allows the buckets to overlap. The size of the cells is based on the local density of the data. The use of overlapping buckets allows a more compact approximation of the data distribution. We also show how to generalize kernel density estimators and how to apply them to the multidimensional query approximation problem. Finally, we compare the accuracy of the proposed techniques with existing techniques using real and synthetic datasets. The experimental results show that the proposed techniques behave more accurately in high dimensionalities than previous approaches. The VLDB Journal Springer Journals

Selectivity estimators for multidimensional range queries over real attributes

Loading next page...
Copyright © 2005 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial