Selective targeting of melanoma using N-(2-diethylaminoethyl) 4-[18F]fluoroethoxy benzamide (4-[18F]FEBZA): a novel PET imaging probe

Selective targeting of melanoma using N-(2-diethylaminoethyl) 4-[18F]fluoroethoxy benzamide... Background: The purpose of this study was to develop a positron emission tomography (PET) imaging probe that is easy to synthesize and selectively targets melanoma in vivo. Herein, we report the synthesis and 18 18 preclinical evaluation of N-(2-diethylaminoethyl) 4-[ F]Fluoroethoxy benzamide (4-[ F]FEBZA). A one-step synthesis was developed to prepare 4-[ F]FEBZA in high radiochemical yields and specific activity. The binding affinity, the in vitro binding, and internalization studies were performed using B16F1 melanoma cell line. The biodistribution studies were performed in C57BL/6 normal mice, C57BL/6 mice bearing B16F1 melanoma tumor xenografts, and nu/nu athymic mice bearing HT-29 human adenocarcinoma tumor and C-32 amelanotic melanoma tumor xenografts. MicroPET studies were performed in mice bearing B16F1 and HT-29 tumor xenografts. Results: 4-[ F]FEBZA was prepared in 53 ± 14% radiochemical yields and a specific activity of 8.7 ± 1.1 Ci/μmol. The overall synthesis time for 4-[ F]FEBZA was 54 ± 7 min. The in vitro binding to B16F1 cells was 60.03 ± 0.48% after 1 h incubation at 37 °C. The in vivo biodistribution studies show a rapid and high uptake of F-18 in B16F1 tumor with 8. 66 ± 1.02%IA/g in this tumor at 1 h. In contrast, http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png EJNMMI Research Springer Journals

Selective targeting of melanoma using N-(2-diethylaminoethyl) 4-[18F]fluoroethoxy benzamide (4-[18F]FEBZA): a novel PET imaging probe

Loading next page...
 
/lp/springer_journal/selective-targeting-of-melanoma-using-n-2-diethylaminoethyl-4-18f-UYwMwlOcyd
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s).
Subject
Medicine & Public Health; Nuclear Medicine; Imaging / Radiology; Orthopedics; Cardiology; Oncology
eISSN
2191-219X
D.O.I.
10.1186/s13550-017-0311-2
Publisher site
See Article on Publisher Site

Abstract

Background: The purpose of this study was to develop a positron emission tomography (PET) imaging probe that is easy to synthesize and selectively targets melanoma in vivo. Herein, we report the synthesis and 18 18 preclinical evaluation of N-(2-diethylaminoethyl) 4-[ F]Fluoroethoxy benzamide (4-[ F]FEBZA). A one-step synthesis was developed to prepare 4-[ F]FEBZA in high radiochemical yields and specific activity. The binding affinity, the in vitro binding, and internalization studies were performed using B16F1 melanoma cell line. The biodistribution studies were performed in C57BL/6 normal mice, C57BL/6 mice bearing B16F1 melanoma tumor xenografts, and nu/nu athymic mice bearing HT-29 human adenocarcinoma tumor and C-32 amelanotic melanoma tumor xenografts. MicroPET studies were performed in mice bearing B16F1 and HT-29 tumor xenografts. Results: 4-[ F]FEBZA was prepared in 53 ± 14% radiochemical yields and a specific activity of 8.7 ± 1.1 Ci/μmol. The overall synthesis time for 4-[ F]FEBZA was 54 ± 7 min. The in vitro binding to B16F1 cells was 60.03 ± 0.48% after 1 h incubation at 37 °C. The in vivo biodistribution studies show a rapid and high uptake of F-18 in B16F1 tumor with 8. 66 ± 1.02%IA/g in this tumor at 1 h. In contrast,

Journal

EJNMMI ResearchSpringer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off