Selection of Zygosaccharomyces rouxii strains resistant to cadmium with improved removal abilities through ultraviolet-diethyl sulfate cooperative mutagenesis

Selection of Zygosaccharomyces rouxii strains resistant to cadmium with improved removal... Cd2+ resistance and bioaccumulation capacity were selected from parental Zygosaccharomyces rouxii (CRZ-0) while maintaining NaCl tolerance using protoplast mutagenesis technology. Ultraviolet-diethyl sulfate (UV-DES) cooperative mutagenesis, followed by preliminary screening and rescreening, was used to select the mutant strain CRZ-9. CRZ-9 grew better than CRZ-0 in YPD medium with 20 or 50 mg L−1 of Cd2+. Scanning electron microscopy observations and flow cytometry tests indicated that CRZ-9 was more effective at eliminating reactive oxygen species (ROS) generated by Cd2+, which led to less cellular structural damage and lower lethality. Furthermore, compared with CRZ-0, CRZ-9 exhibited increased potential for application with higher Cd2+ removal ratio, wider working pH range, and lower biomass dosage in Cd2+ bioaccumulation. The mutant strain CRZ-9 possessed improved Cd2+ resistance and bioaccumulation capacity and therefore is a promising strain to remove Cd2+ from wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Selection of Zygosaccharomyces rouxii strains resistant to cadmium with improved removal abilities through ultraviolet-diethyl sulfate cooperative mutagenesis

Loading next page...
 
/lp/springer_journal/selection-of-zygosaccharomyces-rouxii-strains-resistant-to-cadmium-UKEEdDeFFw
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9546-8
Publisher site
See Article on Publisher Site

Abstract

Cd2+ resistance and bioaccumulation capacity were selected from parental Zygosaccharomyces rouxii (CRZ-0) while maintaining NaCl tolerance using protoplast mutagenesis technology. Ultraviolet-diethyl sulfate (UV-DES) cooperative mutagenesis, followed by preliminary screening and rescreening, was used to select the mutant strain CRZ-9. CRZ-9 grew better than CRZ-0 in YPD medium with 20 or 50 mg L−1 of Cd2+. Scanning electron microscopy observations and flow cytometry tests indicated that CRZ-9 was more effective at eliminating reactive oxygen species (ROS) generated by Cd2+, which led to less cellular structural damage and lower lethality. Furthermore, compared with CRZ-0, CRZ-9 exhibited increased potential for application with higher Cd2+ removal ratio, wider working pH range, and lower biomass dosage in Cd2+ bioaccumulation. The mutant strain CRZ-9 possessed improved Cd2+ resistance and bioaccumulation capacity and therefore is a promising strain to remove Cd2+ from wastewater.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off