Selection of ancillary data to derive production management units in sweet corn (Zea Mays var. rugosa) using MANOVA and an information criterion

Selection of ancillary data to derive production management units in sweet corn (Zea Mays var.... In production systems where high-resolution harvest data are unavailable there is often a reliance on ancillary information to generate potential management units. In these situations correct identification of relevant sources of data is important to minimize cost to the grower. For three fields in a sweet corn production system in central NSW, Australia, several sets of high-resolution data were obtained using soil and crop canopy sensors. Management units were derived by k-means classification for 2–5 classes using three approaches: (1) with soil data, (2) with crop data and (3) a combination of both soil and crop data. Crop quantity and quality were sampled manually, and the sample data were related to the different management units using multivariate analysis of variance (MANOVA). The corrected Akaike information criterion (AICc) was then used to rank the different sources of data and the different orders of management units. For irrigated, short-season sweet corn production the management units derived from the crop canopy sensor data explained more variation in key harvest variables than management units derived from an apparent soil electrical conductivity (ECa) survey or a mixture of crop and soil sensor data. Management units derived from crop data recorded just prior to side-dressing outperformed management units derived from data recorded earlier in the season. However, multi-temporal classification of early and mid-season crop data gave better results than single layer classification at any time. For all three fields in this study, a 3- or 4-unit classification gave the best results according to the information criterion (AICc). For growers interested in adopting differential management in irrigated sweet corn, investment in a crop canopy sensor will provide more useful high-resolution information than that in a high-resolution ECa survey. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Selection of ancillary data to derive production management units in sweet corn (Zea Mays var. rugosa) using MANOVA and an information criterion

Loading next page...
 
/lp/springer_journal/selection-of-ancillary-data-to-derive-production-management-units-in-UVDevz0kTy
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-010-9195-0
Publisher site
See Article on Publisher Site

Abstract

In production systems where high-resolution harvest data are unavailable there is often a reliance on ancillary information to generate potential management units. In these situations correct identification of relevant sources of data is important to minimize cost to the grower. For three fields in a sweet corn production system in central NSW, Australia, several sets of high-resolution data were obtained using soil and crop canopy sensors. Management units were derived by k-means classification for 2–5 classes using three approaches: (1) with soil data, (2) with crop data and (3) a combination of both soil and crop data. Crop quantity and quality were sampled manually, and the sample data were related to the different management units using multivariate analysis of variance (MANOVA). The corrected Akaike information criterion (AICc) was then used to rank the different sources of data and the different orders of management units. For irrigated, short-season sweet corn production the management units derived from the crop canopy sensor data explained more variation in key harvest variables than management units derived from an apparent soil electrical conductivity (ECa) survey or a mixture of crop and soil sensor data. Management units derived from crop data recorded just prior to side-dressing outperformed management units derived from data recorded earlier in the season. However, multi-temporal classification of early and mid-season crop data gave better results than single layer classification at any time. For all three fields in this study, a 3- or 4-unit classification gave the best results according to the information criterion (AICc). For growers interested in adopting differential management in irrigated sweet corn, investment in a crop canopy sensor will provide more useful high-resolution information than that in a high-resolution ECa survey.

Journal

Precision AgricultureSpringer Journals

Published: Oct 5, 2010

References

  • Spatial variation in yield and quality in a small apple orchard
    Aggelopoulou, KD; Wulfsohn, D; Fountas, S; Gemtos, TA; Nanos, GD; Blackmore, S

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off