Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus

Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease... Foot-and-mouth disease virus (FMDV) loses infectivity and immunogenicity due to its disassembly in culture environments below pH 6.8. To study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of inactivated FMD vaccines during the manufacturing process, type O FMDV mutants with increased resistance to acid inactivation were selected, and the genes encoding their capsid proteins were sequenced. Three amino acid substitutions (VP1 N17D, VP2 D86A, and VP4 S73N) were found in all of the mutants. When these substitutions were introduced into seven infectious FMDV clones alone or combined, a single amino acid substitution in the VP1 protein, N17D, which also appears in type C FMDV acid-resistant mutants, was found to be responsible for the increased resistance to acid inactivation for type O FMDV. In addition, although viral fitness was reduced under standard culture conditions, viral growth kinetics and virulence were not significantly altered in the rescued mutant virus rN17D with the VP1 N17D substitution. Importantly, the N17D substitution could confer improved immunogenicity to the mutant virus rN17D under acidic conditions compared with its parental virus O/YS/CHA/05. These results demonstrate that the N17D substitution in VP1 is the molecular determinant of the acid-resistant phenotype in type O FMDV, indicating the potential for use of this substitution to improve the acid stability of inactivated FMD vaccines during the vaccine production process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus

Loading next page...
 
/lp/springer_journal/selection-and-characterization-of-an-acid-resistant-mutant-of-serotype-rXPneGe10M
Publisher
Springer Vienna
Copyright
Copyright © 2014 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-013-1872-7
Publisher site
See Article on Publisher Site

Abstract

Foot-and-mouth disease virus (FMDV) loses infectivity and immunogenicity due to its disassembly in culture environments below pH 6.8. To study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of inactivated FMD vaccines during the manufacturing process, type O FMDV mutants with increased resistance to acid inactivation were selected, and the genes encoding their capsid proteins were sequenced. Three amino acid substitutions (VP1 N17D, VP2 D86A, and VP4 S73N) were found in all of the mutants. When these substitutions were introduced into seven infectious FMDV clones alone or combined, a single amino acid substitution in the VP1 protein, N17D, which also appears in type C FMDV acid-resistant mutants, was found to be responsible for the increased resistance to acid inactivation for type O FMDV. In addition, although viral fitness was reduced under standard culture conditions, viral growth kinetics and virulence were not significantly altered in the rescued mutant virus rN17D with the VP1 N17D substitution. Importantly, the N17D substitution could confer improved immunogenicity to the mutant virus rN17D under acidic conditions compared with its parental virus O/YS/CHA/05. These results demonstrate that the N17D substitution in VP1 is the molecular determinant of the acid-resistant phenotype in type O FMDV, indicating the potential for use of this substitution to improve the acid stability of inactivated FMD vaccines during the vaccine production process.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2014

References

  • FMD vaccines
    Doel, T

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off