Seismic fragility assessment of a multi-span cable-stayed bridge with tall piers

Seismic fragility assessment of a multi-span cable-stayed bridge with tall piers In this study, the longitudinal seismic fragility of a five-span cable-stayed bridge with tall piers is investigated using the fragility method. The OpenSees is applied to develop a finite element model of the cable-stayed bridge, and both the geometric and material nonlinearities are considered. A suite of 80 ground motions is selected to perform the nonlinear time history analysis, and the seismic responses of the expansion joint, deck, cables, and piers are discussed to determine the damage indexes of these components. Next, fragility curves are developed to assess the seismic performance of the cable-stayed bridge. The results show that the expansion joint, deck and cables are the vulnerable components, while the failure probability of the pier is relatively low. Moreover, the effects of the deck-pier connections and viscous fluid dampers on the vulnerability of the components and the bridge system are also studied. It is shown that the vulnerability of the cable and deck is sensitive to the deck-pier connections. Moreover, the deck-pier connection enhances the stiffness of the cable-stayed bridge. Therefore, it affects the seismic response of the cable-stayed bridge. However, the deck-pier connection has relatively slight effect on the system fragility. Furthermore, the location of the viscous fluid dampers significantly affects their effectiveness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Earthquake Engineering Springer Journals

Seismic fragility assessment of a multi-span cable-stayed bridge with tall piers

Loading next page...
 
/lp/springer_journal/seismic-fragility-assessment-of-a-multi-span-cable-stayed-bridge-with-GI5b5Dcf0o
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Environmental Engineering/Biotechnology; Civil Engineering; Geophysics/Geodesy; Hydrogeology; Structural Geology
ISSN
1570-761X
eISSN
1573-1456
D.O.I.
10.1007/s10518-017-0106-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial