Segment Combining and Patching for Short Packet Forward Error Control Coding

Segment Combining and Patching for Short Packet Forward Error Control Coding Modern networks are popular with a large number of short packets generated by many light weight, low power devices. We propose a new approach, segment combining and patching (SCP), for forward error control coding suitable for short packets, where the encoder logically divides a full packet into a number of partially overlapped subpackets based on a Finite Projective Plane of order m, and transmits the full packet n times. Upon receiving all n replicas of a full packet, the decoder generates an additional combined packet using Maximum Ratio Combining. By selecting non-faulty subpackets through Cyclic Redundancy Checks, both inter-cluster and intra-cluster patching are then performed on the n + 1 clusters of subpackets until no new non-faulty subpackets are generated. Simulation results in both AWGN and block fading channels demonstrate that the SCP is an effective approach for forward error control coding for short packet communication in embedded networks, sensor networks, and so on. Lastly, we provide a theory of SCP to show how it works. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Segment Combining and Patching for Short Packet Forward Error Control Coding

Loading next page...
 
/lp/springer_journal/segment-combining-and-patching-for-short-packet-forward-error-control-r6Xf5lsoxg
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4845-4
Publisher site
See Article on Publisher Site

Abstract

Modern networks are popular with a large number of short packets generated by many light weight, low power devices. We propose a new approach, segment combining and patching (SCP), for forward error control coding suitable for short packets, where the encoder logically divides a full packet into a number of partially overlapped subpackets based on a Finite Projective Plane of order m, and transmits the full packet n times. Upon receiving all n replicas of a full packet, the decoder generates an additional combined packet using Maximum Ratio Combining. By selecting non-faulty subpackets through Cyclic Redundancy Checks, both inter-cluster and intra-cluster patching are then performed on the n + 1 clusters of subpackets until no new non-faulty subpackets are generated. Simulation results in both AWGN and block fading channels demonstrate that the SCP is an effective approach for forward error control coding for short packet communication in embedded networks, sensor networks, and so on. Lastly, we provide a theory of SCP to show how it works.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off