Seeking the truth about ad hoc join costs

Seeking the truth about ad hoc join costs In this paper, we re-examine the results of prior work on methods for computing ad hoc joins. We develop a detailed cost model for predicting join algorithm performance, and we use the model to develop cost formulas for the major ad hoc join methods found in the relational database literature. We show that various pieces of “common wisdom” about join algorithm performance fail to hold up when analyzed carefully, and we use our detailed cost model to derive op timal buffer allocation schemes for each of the join methods examined here. We show that optimizing their buffer allocations can lead to large performance improvements, e.g., as much as a 400% improvement in some cases. We also validate our cost model's predictions by measuring an actual implementation of each join algorithm considered. The results of this work should be directly useful to implementors of relational query optimizers and query processing systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Seeking the truth about ad hoc join costs

Loading next page...
 
/lp/springer_journal/seeking-the-truth-about-ad-hoc-join-costs-J7W3xh0sYz
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050043
Publisher site
See Article on Publisher Site

Abstract

In this paper, we re-examine the results of prior work on methods for computing ad hoc joins. We develop a detailed cost model for predicting join algorithm performance, and we use the model to develop cost formulas for the major ad hoc join methods found in the relational database literature. We show that various pieces of “common wisdom” about join algorithm performance fail to hold up when analyzed carefully, and we use our detailed cost model to derive op timal buffer allocation schemes for each of the join methods examined here. We show that optimizing their buffer allocations can lead to large performance improvements, e.g., as much as a 400% improvement in some cases. We also validate our cost model's predictions by measuring an actual implementation of each join algorithm considered. The results of this work should be directly useful to implementors of relational query optimizers and query processing systems.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off