As coastal catchment land use intensifies, estuaries receive increased nutrient and sediment loads, resulting in habitats that are dominated by muddy organic-rich sediments. Increased mud (i.e. silt-clay (particles < 63 μm)) content has been associated with negative effects on soft sediment biodiversity and ecosystem functioning, but the simultaneous impact of nutrient enrichment on ecosystem response is unclear. Nutrient recycling and denitrification in estuarine soft sediments represent important ecosystem functions regenerating nutrients for primary producers and regulating the ability to remove excess terrestrially derived nitrogen. To test the effect of sedimentary environment on ecosystem resilience to nutrient perturbation, we experimentally enriched sediments with slow release fertiliser across an intertidal sedimentary gradient (0–24% mud content). The enrichment successfully elevated pore water ammonium concentrations (median 36 × control) to levels representative of enriched estuaries. Findings show that the sedimentary environment can influence ecosystem function response to nutrient stress. In particular, denitrification enzyme activity was suppressed by nutrient enrichment, but the effect was greater as sediment mud content increased. Furthermore, compared with sandy sediments, sediments with high mud content may restrict nutrient processing (release, uptake or transformation of organic nutrients by the benthos) facilitating ecosystem shifts toward eutrophication. These results show the value of investigating the impacts of stressors in different environmental settings and demonstrate that land use practices that increase the proportion of muddy habitats in estuaries may reduce denitrification which in turn may reduce ecosystem resilience to eutrophication.
Estuaries and Coasts – Springer Journals
Published: Jun 1, 2018
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.